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Model Checking

S
?
|= ϕ

S : System specification or implementation
Automaton, transition system, protocol specification, process
expression, code, . . ..

ϕ: Property specification
Temporal logic formula

Verification of other forms (e.g. refinement checking) are not considered
in this talk.
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Executable Specifications and Logic Programs

Logic Programming is well-recognized for its suitability for

Writing interpreters for languages starting from high-level declarative
specifications

Constructing state spaces and searching through them

Performing meaning-preserving abstractions using clever data
representations
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Executable Specification of Operational Semantics

e1 → e′1
(e1 e2)→ (e′1 e2)

e2 → e′2
(v1 e2)→ (v1 e′2)

(λx . e1) v2 → [x 7→ v2]e1

step(app(E1, E2), app(E1P, E2)) :-

step(E1, E1P).

step(app(V1, E2), app(V1, E2P)) :-

isValue(V1),

step(E2, E2P).

step(app(lambda(X, E1), V2), E2) :-

isValue(V2),

subst(X, V2, E1, E2).

isValue(lambda(_, _)).

[Call-By-Value Lambda Calculus]
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Substitution

[x 7→ s]x = s
[x 7→ s]y = y if y 6= x
[x 7→ s](λy . t) = λy . [x 7→ s]t if x 6= y and y 6∈ fv(s)
[x 7→ s](t1 t2) = ([x 7→ s]t1) ([x 7→ s]t2)

This definition becomes complete only when we consider α-renaming.

We can program α-renaming explicitly, or better still. . .

With suitable restrictions on the way λ-terms are written,

represent variables in lambda-terms with logical variables, and
use the “standardization” done by resolution to perform the needed
α-renaming.

We used such a strategy to encode model checkers for the pi-calculus
[Yang et al, VMCAI’03].
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Executable Specification of Abstract Semantics

p = &q

p→ q

p = q q→ r
p→ r

p = *q q→ r r → s
p→ s

*p = q p→ r q→ s
r → s

pts(P,Q) :-

stmt(v(P), addr(Q)).

pts(P,R) :-

stmt(v(P), v(Q)),

pts(Q, R).

pts(P,S) :-

stmt(v(P), star(Q)),

pts(Q, R), pts(R, S).

pts(R, S) :-

stmt(star(P), v(Q)),

pts(P, R),

pts(Q, S).

[Anderson’s Context-Insensitive Points-To Analysis]
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Demand-Driven Analysis

Compute only the information necessary to determine the may-point-to set
of x . [Heinze et al., PLDI 2001]

Tabled query evaluation is naturally demand-driven, but . . .

Clauses of the form pts(R, S) :- stmt(star(P), v(Q)), . . .
lead to generate-and-test evaluation.

Trick: replicate points-to (pts) as pointed-to-by (ptb).

pts(R, S) :-

stmt(star(P), v(Q)),

pts(P, R),

pts(Q, S).

⇒

pts(R, S) :-

ptb(R, P),

stmt(star(P), v(Q)),

pts(Q, S).
[PPDP’05]
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Model Checking as Query Evaluation

Encode the semantic equations of temporal logics as a logic program.

Query evaluation over the program will perform model checking.

We consider traditional query evaluation methods developed and used in
LP literature.

Rybalchenko et al take a very different (and neat) approach: posing
verification problems as constraint solving over Horn Constraints.

Verification of certain infinite-state systems is enabled by the
construction and use of specialized Horn Constraint solvers.
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Executable Specification of Semantic Equations

[[·]] is the smallest set such that:

% [[p]] = states satisfying prop. p.
[[p]] = {s | p ∈ AP(s)}

% Conjunction:
[[ϕ1 ∧ ϕ2]] = [[ϕ1]] ∩ [[ϕ2]]

% [[EF f ]] =

% {s | ∃t. s
∗→ t and t ∈ [[f ]]}

[[EFϕ]] = [[ϕ]]
∪{s | ∃t. s → t, t ∈ [[EFϕ]]}

...

models(S,prop(P)) :-

holds(S, P).

models(S,and(F1,F2)) :-

models(S, F1), models(S, F2).

models(S, ef(F)) :-

models(S, F).

models(S, ef(F)) :-

trans(S, T), models(T, ef(F)).

models(S, af(F)) :-

models(S, F).

models(S, af(F)) :-

findall(T, trans(S, T), L),

all_models(T, af(F)).

...

[Computation Tree Logic’s Semantics (Fragment)]
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Model Checking as Query Evaluation

Multi-Agent Systems

Parameterized Systems

Mobile Ad-Hoc Networks

Model Checkers
Infinite-State Systems

π-Calculus
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System Models: Kripke Structures and LTSs

State transition systems: directed graphs with

Vertices representing system states, and
Edges representing transitions between states

Labels on edges representing “actions”: Labeled Transition Systems.

Vertices associated with sets of propositions: Kripke structures.
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Property Specification: Temporal Logics I

Computational Tree Logic (CTL):

ϕ → p | ϕ ∧ ϕ | ϕ ∨ ϕ Propositions, logical connectives
| Eφ | Aφ State formulae

φ → Xϕ | ϕ1 U ϕ2 | ϕ1R ϕ2 Path formulae

Semantics of the CTL is usually given in terms of computation trees
of Kripke Structures.

The meaning of path formulae are given in terms of sets of paths
(runs, or sequences of states) of the system.

Informally, ϕ1 U ϕ2 holds in a run means ϕ1 holds in every state of
the run until a state where ϕ2 holds.

Derived path formulae F ϕ and G ϕ are often used for simplicity.
F ϕ ≡ tt U ϕ
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Property Specification: Temporal Logics II

Let K be a Kripke structure and AP(s) denote the set of atomic
propositions associated with state s in K .

K , s |= p if p ∈ AP(s)

K , s |= ϕ1 ∧ ϕ2 if K , s |= ϕ1 and K , s |= ϕ2. (sim. for “∨”)

K , s |= Aφ if for every path π in K with init(π) = s, K , π |= φ.

K , s |= Eφ if for some path π in K with init(π) = s, K , π |= φ.

K , π |= Xϕ if K , π[1] |= ϕ

K , π |= ϕ1 U ϕ2 if π = s1, s2, . . ., and ∃i ≥ 1 such that

K , si |= ϕ2, and
∀1 ≤ j < i , K , sj |= ϕ1.

. . .
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Property Specification: Temporal Logics III

Modal Mu-Calculus

ϕ → tt | ϕ ∧ ϕ | ϕ ∨ ϕ logical connectives
| 〈α〉ϕ Diamond formulae
| [α]ϕ Box formulae
| X Formula variable
| µX .ϕ Least fixed point formula
| νX .ϕ Greatest fixed point formula

Semantics of modal mu-calculus formulae are defined over LTSs, with α
ranging over the actions of the LTS.
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Property Specification: Temporal Logics IV

Examples in the “assembly language of propositional temporal logics”:

1 “a” action is eventually possible:

µX .(〈a〉tt) ∨ (〈−〉X )

2 “b” action is eventually possible from each state:

νY .[−]Y ∧ (µX .(〈b〉tt) ∨ (〈−〉X ))

3 “c” action is enabled infinitely often on all infinite paths:

νY .µX .[−]((〈c〉tt ∧ Y ) ∨ X )
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System Specification: Process Languages

Core languages such as CCS, pi-calculus etc. that elucidate the
meaning of interleaving, synchronization, communication etc.

Value-passing languages add variables and values to the core to allow
succinct specifications.

Meanings of specifications in such languages are given in terms of
LTSs and Kripke Structures (“translating them down”).

Derived LTSs may not be finite state.

Richer languages permit description of

Push-down systems (analogous to recursive programs)
Parameterized systems (where aspects of a systems, e.g. number of
processes of a specific family, may be only symbolically specified).
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A Model Checker for CTL: I

CTL formulae represented as Prolog Terms of the following forms:

prop(P) atomic propositions

neg(F ), and(F1, F2), or(F1, F2): logical connectives.

ex(F ), eu(F1, F2), er(F1, F2): formulae with existential path
quantifier

ax(F ), au(F1, F2), ar(F1, F2): formulae with universal path quantifier

Kripke structure represented as a set of Prolog facts:

trans(S ,T ): transition from state S to state T .

holds(S ,P): proposition P holds at state S .
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A Model Checker for CTL: II

1 % Propositions and their negations
2 models(S, prop(P)) :- holds(S, P).

3 models(S, neg(prop(P))) :- not holds(S, P).

4

5 % Conjunction and Disjunction
6 models(S, and(F1,F2)) :- models(S, F1), models(S, F2).

7 models(S, or(F1, F2)) :- models(S, F1); models(S, F2).

8

9 % EX:
10 models(S, ex(F)) :- trans(S, T), models(T, F).
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A Model Checker for CTL: II

Eϕ1 U ϕ2 can be “unrolled” as:

ϕ2 ∨ (ϕ1 ∧ (E X (Eϕ1Uϕ2)))

where the unrolling is finite (least fixed point).

Hence:

11 % EU
12 models(S, eu(F1, F2)) :-

13 models(S, or(F2, and(F1, ex(eu(F1, F2))))).

Similarly:

14 % AU
15 models(S, au(F1, F2)) :-

16 models(S, or(F2, and(F1, ax(au(F1, F2))))).
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A Model Checker for CTL: III

Aφ ≡ ¬E¬φ and ¬Xϕ ≡ X¬ϕ
But encoding ax in terms of negation and ex means our unrolling of
au will result in a non-stratified program.

Hence:

17 % AX
18 models(S, ax(F)) :-

19 findall(T, trans(S, T), L),

20 all_models(L, F).

where

1 all_models([], F).

2 all_models([S|L], F) :- models(S, F), all_models(L, F).
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A Model Checker for CTL: IV

¬(ϕ1R ϕ2) ≡ (¬ϕ1)U (¬ϕ2)

Hence:

21 % ER
22 models(S, er(F1, F2)) :-

23 negate(F1, NF1),

24 negate(F2, NF2),

25 tnot models(S, au(NF1, NF2)).

where negate(F , NF ) binds NF to the negation normal form of
neg(F ).
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Tabled Evaluation for Model Checking

Tabled resolution is needed for termination

Note unrolling of eu and au

models/2 is not statically stratified

Note use of negative dependency in treatment of er.

But query evaluation will be dynamically stratified

Expansion of er using au is not unrolling, and does not lead to cycles.
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Complexity of CTL Model Checking

models/2: Given a Kripke structure with |S | states, and a formula of
size |ϕ|, there are at most O(|S |.|ϕ|) distinct calls to models/2.

Each call is ground, so as at most one answer.

If |T | is the size of the Kripke structure (max. of number of states
and transitions), then query evaluation takes O(|T |.|ϕ|) steps.

Access into the call tables may take an additional O(|ϕ|) time per
access.

But with hash-consing (or any other suitable representation of a
formula term), table access time will be O(1) with perfect indexing.

Hence model checking can be done in O(|T |.|ϕ|) time and (|S |.|ϕ|)
space.

Autumn School ’16 Verification and PLP, Part 1 23 / 53



Motivation Verification LP Encodings Probabilistic LP Inference for Model Checking

Model Checker for the Modal Mu-Calculus: I

Equational form of the modal mu-calculus.

µX .(〈a〉tt) ∨ (〈−〉X )

written as x
µ
= (〈a〉tt) ∨ (〈−〉x)

νY .[−]Y ∧ (µX .(〈b〉tt) ∨ (〈−〉X ))
written as a set of two equations:

y
ν
= [−]y ∧ x

x
µ
= (〈b〉tt) ∨ (〈−〉x)

νY .µX .[−]((〈c〉tt ∧ Y ) ∨ X )
written as a set of two parameterized equations:

y
ν
= x(y)

x(Z )
µ
= [−]((〈c〉tt ∧ Z ) ∨ x(Z ))
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Model Checker for the Modal Mu-Calculus: II

Assume equational form of mu-calculus formulas are represented by a
set of facts. The RHS of equations are represented a Prolog terms.

1 % Propositions and their negations
2 models(S, tt).

3 models(S, and(F1,F2)) :- models(S, F1), models(S, F2).

4 models(S, or(F1, F2)) :- models(S, F1); models(S, F2).

5

6 % Diamond:
7 models(S,diam(A,F)) :- trans(S, A, T), models(T, F).

8

9 % Box :
10 models(S, box(A,F)) :-

11 findall(T, trans(S, A, T), L), all_models(L, F).

Note the action label “A” in the transition relation.
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Model Checker for the Modal Mu-Calculus: trial

Assume equational form of mu-calculus formulas are represented by a
set of facts of the form

lfp(x , ϕ) for µ equations, and
gfp(x , ϕ) for ν equations.

12 % LFP formula
13 models(S, form(X)) :- lfp(X, F), models(S, F).

14

15 % GFP formula
16 models(S, form(X)) :-

17 gfp(X, F),

18 negate(F, NF),

19 tnot models(S, NF).

Autumn School ’16 Verification and PLP, Part 1 26 / 53



Motivation Verification LP Encodings Probabilistic LP Inference for Model Checking

Alternation Freedom and Stratification

As in the case of CTL model checker, the models/2 predicate
defining the mu-calculus model checker is not statically stratified.

But for formulae with a single fixed point, or alternation-free fixed
points, query evaluation is dynamically stratified.

For formulae with alternation, query evaluation may not even be
dynamically stratified.

One strategy is to generate a “residual” program that retains the cycles
through negation, and generate a preferred stable model of the residue.
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Complexity of Modal Mu-Calculus Model Checking

Time and space complexity of query evaluation over models/2 can be
analyzed along the same lines as used for CTL.

For an alternation-free formula ϕ, model checking can be done in

O(|S |.|ϕ|) space, where |S | is the number of states in the LTS.
O(|T |.|ϕ|) time, where |T | is the size of the LTS.
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Beyond Finite-State Model Checking: I

Use constraints to represent sets of equivalent states.

Finite number of equivalence classes implies termination (e.g. classical
timed automata).

Allow data variables in Property Specification that may unify with
data fields in system specification.

Encoding is agnostic to which side has variables.
Enables verification of a class of data independent systems.
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Beyond Finite-State Model Checking: II

Use Forall-Exists quantified Horn Clauses as a constraint language
with powerful (albeit incomplete) solvers.

A number of model checking problems, including CTL model
checking of infinite state systems, can be cast as a satisfaction
problem over the above constraint language.
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Logic Programs

Program Rules

+

Facts

|= Query Answers

ICL, PRISM, ProbLog, . . .
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Probabilistic Logic Programs

Program Rules

+

Probabilistic Facts

|= Query Answers

ICL, PRISM, ProbLog, . . .
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Independent Choice Logic (ICL)

Poole’s ICL forms a precursor to modern PLP languages.
An ICL theory has:

An acyclic logic program

A collection of atom sets, e.g. {{a0, a1}, {b0, b1, b2}}, called the
choice space.

Each set in the collection can be viewed as a random variable; each
atom in the set is a possible outcome of the variable.

Distributions over the choice space.

Semantics of ICL given in terms of the distributions over the choice space.
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Stochastic Logic Programs (SLP)

SLP [Muggleton et al] defines a probability distribution over program
clauses.

Probability of a query answer is computed based on the probabilities
of clauses used during resolution.

SLP is expressive enough to represent a large class of non-recursive
stochastic systems (e.g. non-recursive Stochastic Context Free
Grammars).
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PRISM

A language for probabilistic logic programming with system for inference
and parameter learning (Sato et al, since ’99).

Logic programs with a set of probabilistic facts: msw(X, I, V),
where

X is a discrete-valued random process
V is a value generated by the random process
I is the instance number, distinguishing different trials.

Random variables generated by the same random process are i.i.d.

Random variables generated by distinct random processes are
independent.

Has a well-defined model-theoretic (distribution) semantics, and an
operational semantics based on tabled resolution.
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Distribution semantics

% “a” is a boolean random process
p(X) :- msw(a, 0, X),

msw(a, 1, Y),

X=Y.
values(a, [t,f]).

set sw(a, [0.3,0.7])

Worlds:
msw(a,0,t)

msw(a,1,t)

0.09
p(t)

msw(a,0,t)

msw(a,1,f)

0.21

msw(a,0,f)

msw(a,1,t)

0.21

msw(a,0,f)

msw(a,1,f)

0.49
p(f)

Outcomes of random processes
define worlds.

The probability of a world is
assigned based on the probabilities
of the outcomes in the world.

In each world, msws form a set of
logical (non-probabilistic) facts.

Distribution over least models:
the least model in each world is
assigned the probability of that
world.
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assigned the probability of that
world.

Autumn School ’16 Verification and PLP, Part 1 35 / 53



Motivation Verification LP Encodings Probabilistic LP Inference for Model Checking

Distribution semantics

% “a” is a boolean random process
p(X) :- msw(a, 0, X),

msw(a, 1, Y),

X=Y.
values(a, [t,f]).

set sw(a, [0.3,0.7])

Worlds:
msw(a,0,t)

msw(a,1,t)

0.09

p(t)

msw(a,0,t)

msw(a,1,f)

0.21

msw(a,0,f)

msw(a,1,t)

0.21

msw(a,0,f)

msw(a,1,f)

0.49

p(f)

Outcomes of random processes
define worlds.

The probability of a world is
assigned based on the probabilities
of the outcomes in the world.

In each world, msws form a set of
logical (non-probabilistic) facts.

Distribution over least models:
the least model in each world is
assigned the probability of that
world.

Autumn School ’16 Verification and PLP, Part 1 35 / 53



Motivation Verification LP Encodings Probabilistic LP Inference for Model Checking

Distribution semantics

% “a” is a boolean random process
p(X) :- msw(a, 0, X),

msw(a, 1, Y),

X=Y.
values(a, [t,f]).

set sw(a, [0.3,0.7])

Worlds:
msw(a,0,t)

msw(a,1,t)

0.09

p(t)

msw(a,0,t)

msw(a,1,f)

0.21

msw(a,0,f)

msw(a,1,t)

0.21

msw(a,0,f)

msw(a,1,f)

0.49

p(f)

Outcomes of random processes
define worlds.

The probability of a world is
assigned based on the probabilities
of the outcomes in the world.

In each world, msws form a set of
logical (non-probabilistic) facts.

Distribution over least models:
the least model in each world is
assigned the probability of that
world.

Autumn School ’16 Verification and PLP, Part 1 35 / 53



Motivation Verification LP Encodings Probabilistic LP Inference for Model Checking

Distribution semantics

% “a” is a boolean random process
p(X) :- msw(a, 0, X),

msw(a, 1, Y),

X=Y.
values(a, [t,f]).

set sw(a, [0.3,0.7])

Models:
msw(a,0,t)

msw(a,1,t)

0.09
p(t)

msw(a,0,t)

msw(a,1,f)

0.21

msw(a,0,f)

msw(a,1,t)

0.21

msw(a,0,f)

msw(a,1,f)

0.49
p(f)

Outcomes of random processes
define worlds.

The probability of a world is
assigned based on the probabilities
of the outcomes in the world.

In each world, msws form a set of
logical (non-probabilistic) facts.

Distribution over least models:
the least model in each world is
assigned the probability of that
world.

Autumn School ’16 Verification and PLP, Part 1 35 / 53



Motivation Verification LP Encodings Probabilistic LP Inference for Model Checking

ProbLog

At its simplest, a ProbLog program resembles a Prolog program
where each clauses is annotated with a discrete probability value.

These annotations define a distribution of (non-probabilistic)
programs, resulting in a distribution semantics.

ProbLog and PRISM program, when restricted to discrete
distributions, can be translated to one another, with the same
distribution semantics.

ProbLog query evaluation materializes explanations in non-trivial
structures, and is not subject to PRISM-style independence and
mutual exclusion restrictions.
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Probabilistic Logic Programs: A quick tour

Logic-based representation of statistical models

Examples include BLPs (Kersting and De Raedt, ’00), PRMs
(Friedman et al, ’99), MLNs (Richarson and Domingos, ’06).
The underlying statistical network, derived from logical/statistical
specifications, is finite.

Statistical inference over proof structures

Conservative extension to traditional logic programs, with explicit or
implicit use of random variables and processes.
Examples include PRISM (Sato and Kameya, ’99), ICL (Poole, ’93),
CLP(BN) (Santos Costa et al, ’03), ProbLog (De Raedt et al, ’07),
LPAD (Vennekens et al, ’09).
In terms of expressive power, PRISM, ProbLog and LPAD coincide;
however, they use different inference procedures.

Autumn School ’16 Verification and PLP, Part 1 37 / 53



Motivation Verification LP Encodings Probabilistic LP Inference for Model Checking

Evaluation in PRISM — I

% Finite Mixture Model
q(Y) :- msw(a, 0, X),

msw(b(X), 0, Y).

values(a, [t,f]).

values(b( ), [t,f]).

set sw(a, [0.3,0.7])

set sw(b(t), [0.6,0.4])

set sw(b(f), [0.5,0.5])

Explanations

q(t)

msw(a, t) msw(a, f)

msw(b(t), t) msw(b(f), t)

� �

@
@
@

�
�
�
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Explanations and Probabilities

q(t)

msw(a, t) msw(a, f)
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Evaluation in PRISM — I
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Evaluation in PRISM — I
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Evaluation in PRISM — II

Explanation of an answer: At a high level, the set of msw’s used in a
derivation of the answer.

The probability of an explanation is the product of the probabilities of
random variables in the explanation.

If the msw’s in a derivation are all independent, then the probability of
the explanation can be computed without materializing it.

[Independence assumption]

The probability of an answer is the probability of the set of
explanations of the answer.

If explanations are pairwise mutually exclusive, then the probability of
the set of explanations is the sum of probabilities of each explanation.

[Mutual Exclusion assumption]
If the set of explanations is finite, then this sum can be effectively
computed.

[Finiteness assumption]
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Generalizations

PRISM’s inference procedure uses the Independence, Mutual
Exclusion and Finiteness assumptions to compute probabilities of
answers without materializing the explanations.

Inference mimics the best known algorithms for certain statistical
models (e.g. Viterbi alg. for HMMs).

ProbLog and PITA (an implementation of LPAD) use BDDs to
represent the set of explanations, and consequently remove
Independence and Mutual Exclusion assumptions.

Finiteness assumption is still needed since the BDDs need to be
effectively constructed.
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Evaluation via Knowledge Compilation: I

Explanations can be viewed as residues of partially evaluating all but
the probabilistic facts.

Each set of explanations can be mapped to a Boolean propositional
formula.

Each explanation is a set (conjunction) of random variable valuations.
Each explanation in an explanation set (i.e. disjunction) supports the
derived answer.

Explanations can be materialized more succinctly using other Boolean
formula representations, such as Deterministic Disjunctive Negation
Normal Forms (dDNNFs), etc.
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Evaluation via Knowledge Compilation: II

ProbLog2 uses the more succinct representation of explanations.

Weighted model count is a measure to each Boolean formula, defined
a weighted sum of (the number of) satisfiable assignments.

Weighted model counting can be done in time polynomial in the size
of a Boolean formula’s dDNNF representation.
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Finiteness Assumption and PRISM

In ICLP’12, Sato and Meyer present a method to generate equations
from probabilistic programs with loops.

This mechanism essentially hides the “instance” variable in msws.

It proceeds under the assumption that different occurrences along a
single explanation are independent.

This assumption holds for individual runs of a Markov Chain or prefix
probability computations in Probabilistic CFGs, but does not satisfied
in general.
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Probabilistic Transition Systems in PRISM

Example Markov Chain
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% Encoding as a Probabilistic LP

trans(S, I, T) :- msw(t(S), I, T).
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Probabilistic Transition Systems in PRISM

Example Markov Chain
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% Encoding as a Probabilistic LP

trans(S, I, T) :- msw(t(S), I, T).

% Ranges

:- values(t(s0), [s0, s1, s2]).

:- values(t(s1), [s1, s3, s4]).

:- values(t(s4), [s3]).

% Distributions

set sw(t(s0), [0.5, 0.3, 0.2]).

set sw(t(s1), [0.4, 0.1, 0.5]).

set sw(t(s4), [1]).
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Probabilistic Transition Systems in PRISM

Example Markov Chain
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% Encoding as a Probabilistic LP

trans(S, I, T) :- msw(t(S), I, T).

% Encoding of Reachability

reach(S, I, T) :-

trans(S, I, U),

reach(U, next(I), T).

reach(S, , S).
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Probabilistic Model Checking as Query Evaluation
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trans(S, I, T) :-

msw(t(S), I, T).

reach(S, I, T) :-

trans(S, I, U),

reach(U, next(I), T).

reach(S, , S).

What is the probability of reaching
s3 via some path starting at s0?

|?- prob(reach(s0, 0, s3)).

Evaluation of the above query will
not terminate!

There are infinitely many
explanations for reach(s0, 0, s3)

Distribution semantics is well-defined
and gives the correct probability, but
standard inference methods cannot
evaluate this query.

More recent extension in PRISM
removes finiteness assumption under
restricted conditions.
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Explanations
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trans(S, I, T) :-

msw(t(S), I, T).

reach(S, I, T) :-

trans(S, I, U),

reach(U, next(I), T).

reach(S, , S).

Explanations for reach(s0,0,s3):

msw(t(s0), 0, s1), msw(t(s1), next(0), s3).

msw(t(s0), 0, s0), msw(t(s0), next(0), s1),
msw(t(s1), next(next(0)), s3).

...

msw(t(s0), 0, s1), msw(t(s1), next(0), s1),
msw(t(s1), next(next(0)), s3).

...
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trans(S, I, T) :-

msw(t(S), I, T).

reach(S, I, T) :-

trans(S, I, U),

reach(U, next(I), T).

reach(S, , S).

Note: prob(reach(s0,0,s3)) is same as
prob(reach(s0,H,s3)) for any H.

We can use a grammar to represent the set
of explanations for the abstracted query.

expl(reach(s0,H, s3)) −→
[msw(t(s0),H, s0)],
expl(reach(s0, next(H), s3)).

expl(reach(s0,H, s3)) −→
[msw(t(s0),H, s1)],
expl(reach(s1, next(H), s3)).
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expl(reach(s0, next(H), s3)).

expl(reach(s0,H, s3)) −→
[msw(t(s0),H, s1)],
expl(reach(s1, next(H), s3)).
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trans(S, I, T) :-

msw(t(S), I, T).

reach(S, I, T) :-

trans(S, I, U),

reach(U, next(I), T).

reach(S, , S).

expl(reach(s0,H, s3)) −→
[msw(t(s0),H, s0)],
expl(reach(s0, next(H), s3)).

expl(reach(s0,H, s3)) −→
[msw(t(s0),H, s1)],
expl(reach(s1, next(H), s3)).

is similar to the stochastic grammar:

S0
0.5−→ S0

S0
0.3−→ S1

Answer probability of reach(s0,H,s3) is
the language probability of the above SCFG

and is the least solution to equations of the
form:
x0 = 0.5x0 + 0.3x1
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Abstraction for temporal programs

Instance and Non-Instance variables belong to distinct sorts.
Variables of one sort cannot be unified with those of the other.

Only terms containing instance variables can be used as instance
arguments of msw.

For any clause of a predicate with an instance argument, the instances
on the LHS of the clause must be a subterm of instances on the RHS.
This imposes an ordering on time.
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Temporally Well-Formed Programs

A probabilistic logic program with annotations of the form
temporal(p/n − i).

Example: temporal(reach/3-2)

reach is a temporal predicate
The second argument of an atom with root reach is its instance
argument.

For a rule defining a temporal predicate, the instance argument of the head
must be a subterm of instance arguments of every temporal body predicate.

Example: reach(S, I, T) :-

trans(S, I, U),

reach(U, next(I), T).

Instance arguments are not bound to non-instance arguments, or vice versa.

In explanation grammars of temporally well-formed programs, msw(r , t, x)
will always be independent of any msw derived from non-terminal expl(p)

if t is a proper subterm of p’s instance argument.
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Factored Equation Diagrams

Not all explanation grammars can be translated directly to stochastic
grammars.
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Consider the query

reach(s0, H, s3); reach(s0, H,

s4).

The grammar will have productions of the
form:
expl(reach(s0,H, s3); reach(s0,H, s4)) −→

expl(reach(s0,H, s3)).
expl(reach(s0,H, s3); reach(s0,H, s4)) −→

expl(reach(s0,H, s4)).

The two productions are not mutually
exclusive.

We can factor such grammars using Factored Explanation Diagrams
(FEDs), which are similar to BDDs.
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Structure of FEDs

FED is a labeled DAG with

tt and ff as leaf nodes

msw(r , h) is an n-ary node if r is a
random process with n possible
outcomes;

outgoing edges are labeled with the
outcomes.

expl(t, h) is a binary node;

outgoing edges are labeled 0 and 1.

If there is an edge from x1 to x2,
then x1 < x2 via a specially defined
partial order relation.

s1s0

1

ff tt

0 0 1

expl(reach(s0,s3),

next(H))

expl(reach(s1,s3),

next(H))

msw(t(s0), H)
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Operations on FEDs

Boolean operations “∧” and “∨” can be performed on FEDs along the
same line as on BDDs, with one significant change:

BDD operations are based on a total node order.

We only have a partial node order for FEDs.

When we recursively push operations down the diagram, we may
encounter incomparable nodes.

We then generate a placeholder merge node, and process merges
separately.

Note that msw nodes are always comparable; so a merge will involve
at least one expl node.

We expand (one of) the expl node(s) with its definition, and perform
the postponed operation.
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FEDs to Equations

The probability of a set of explanations is computed by generating and solving a
set of equations from its FED.

FED for expl(reach(s0,s3), H):

s1s0

1

ff tt

0 0 1

expl(reach(s0,s3),

next(H))

expl(reach(s1,s3),

next(H))

msw(t(s0), H)

x0 = t00 ∗ x0

+t01 ∗ x1

t00 = 0.5
t01 = 0.3

FED for expl(reach(s1,s3), H):

ff tt

msw(t(s1), H)

s3

expl(reach(s3,s3), expl(reach(s4,s3),expl(reach(s1,s3),

1
0

1

01
0

s1 s4

next(H)) next(H))next(H))

x1 = t11 ∗ x1

+t13 ∗ x3

+t14 ∗ x4

t11 = 0.4
t13 = 0.1
t14 = 0.5

The least solution to these monotone polynomial equations gives the probability
of the set of explanations.
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Probabilistic Inference for Temporal Queries: Summary

The set of explanations for a temporal query is conceptually treated
as a language defined by a probabilistic grammar.

This grammar is transformed and materialized as a Factored
Explanation Diagram (FED) which ensures that

Distinct productions (paths in the diagram) are mutually exclusive.
Trials of random variables in a path are independent

In other words, an FED is a stochastic grammar for he language of
explanations.

Answer probability is computed as the language probability of the
grammar: by solving a system of monotone polynomial equations.
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