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Model Checking

@ S: System specification or implementation
Automaton, transition system, protocol specification, process
expression, code, ....

@ : Property specification
Temporal logic formula

Verification of other forms (e.g. refinement checking) are not considered
in this talk.
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Executable Specifications and Logic Programs

Logic Programming is well-recognized for its suitability for

o Writing interpreters for languages starting from high-level declarative
specifications

o Constructing state spaces and searching through them

@ Performing meaning-preserving abstractions using clever data
representations
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Executable Specification of Operational Semantics

e — €
(e1 &) — (e &)

e — €
(v1 &) = (v1 &)

(Ax. e1) vo = [x = wle

Autumn School '16

step(app(El, E2), app(E1P, E2)) :-
step(E1, E1P).

step(app(V1, E2), app(Vl, E2P)) :-
isValue(V1),
step(E2, E2P).
step(app(lambda(X, E1), V2), E2) :-
isValue(V2),
subst (X, V2, E1, E2).

isValue(lambda(_, _)).

[Call-By-Value Lambda Calculus]

Verification and PLP, Part 1 4 /53



Motivation

000e00000

Substitution
[x — s]x = s
[x = sly =y if y # x
[x = s](Ay. t) = Ay. [x+—s]t if x#y and y & fv(s)
[x —s|(t1 ) = ([x+— s]t1) ([x — s]t2)
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[x — s]x = s
[x = sly =y if y # x
[x = s](Ay. t) = Ay. [x+—s]t if x#y and y & fv(s)
[x —s|(t1 ) = ([x+— s]t1) ([x — s]t2)

@ This definition becomes complete only when we consider a-renaming.

@ We can program a-renaming explicitly, or better still. ..
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Substitution

[x — s]x = s

[x = sy =y if y # x

[x = s](Ay. t) = Ay. [x+—s]t if x#y and y & fv(s)
[x —s|(t1 ) = ([x+— s]t1) ([x — s]t2)

@ This definition becomes complete only when we consider a-renaming.
@ We can program a-renaming explicitly, or better still. ..

@ With suitable restrictions on the way A\-terms are written,

o represent variables in lambda-terms with logical variables, and
e use the “standardization” done by resolution to perform the needed
a-renaming.

@ We used such a strategy to encode model checkers for the pi-calculus
[Yang et al, VMCAI'03].
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Executable Specification of Abstract Semantics

%’? ptstéﬁi(;zp), addr (Q)) .
pts(P,R) :-
% ;z:‘zév(g; v(Q),
pts(P,8) :-

stmt (v(P), star(Q)),

P=* 9727 r=s pts(Q, R), pts(R, S).

p—s
pts(R, S) :-
%0 = oy N stmt (star(P), v(Q)),
P-4 rp_> =3 pts(P, R),
s pts(Q, S).

[Anderson’s Context-Insensitive Points-To Analysis]
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Demand-Driven Analysis

Compute only the information necessary to determine the may-point-to set
of x. [Heinze et al., PLDI 2001]

@ Tabled query evaluation is naturally demand-driven, but ...
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Demand-Driven Analysis

Compute only the information necessary to determine the may-point-to set
of x. [Heinze et al., PLDI 2001]

@ Tabled query evaluation is naturally demand-driven, but ...

o Clauses of the form pts(R, S) :- stmt(star(P), v(Q)),
lead to generate-and-test evaluation.
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Demand-Driven Analysis

Compute only the information necessary to determine the may-point-to set
of x. [Heinze et al., PLDI 2001]

@ Tabled query evaluation is naturally demand-driven, but ...

o Clauses of the form pts(R, S) :- stmt(star(P), v(Q)), ...
lead to generate-and-test evaluation.

e Trick: replicate points-to (pts) as pointed-to-by (ptb).

pts(R, S) :- pts(R, S) :-
stmt (star(P), v(Q)), N ptb(R, P),
pts(P, R), stmt (star(P), v(Q)),
pts(Q, S). pts(Q, 9).
[PPDP’'05]
Verification and PLP, Part 1
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Model Checking as Query Evaluation

@ Encode the semantic equations of temporal logics as a logic program.

@ Query evaluation over the program will perform model checking.

We consider traditional query evaluation methods developed and used in
LP literature.

@ Rybalchenko et al take a very different (and neat) approach: posing
verification problems as constraint solving over Horn Constraints.

@ Verification of certain infinite-state systems is enabled by the
construction and use of specialized Horn Constraint solvers.

Autumn School '16 Verification and PLP, Part 1
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Executable Specification of Semantic Equations

[-] is the smallest set such that:
% [[p] = states satisfying prop. p.
[Pl ={s|p < AP(s)}

% Conjunction:
[o1 A 2] = 1] N [ 2]

% [EF f] =
% {5|3t.53tandt€ﬂf]]}
[EFe] =[]

U{s|3t. s = t,t € [EF¢]}

models(S,prop(P)) :-
holds(S, P).

models(S,and(F1,F2)) :-
models(S, F1), models(S, F2).

models(S, ef(F)) :-
models(S, F).
models(S, ef(F)) :-
trans(S, T), models(T, ef(F)).

models(S, af(F)) :-
models(S, F).

models(S, af(F)) :-
findall(T, tramns(S, T), L),
all_models(T, af(F)).

[Computation Tree Logic’s Semantics (Fragment)]
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Model Checking as Query Evaluation

Mobile Ad-Hoc Networks
Parameterized Systems

Multi-Agent Systems
Model Checkers

Infinite-State Systems
m-Calculus
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Model Checking as Query Evaluation

Mobile Ad-Hoc Networks
Parameterized Systems

Multi-Agent Systems
Model Checkers

Infinite-State Systems

w-Calculus
Probabilistic Systems
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System Models: Kripke Structures and LTSs

@ State transition systems: directed graphs with

o Vertices representing system states, and
o Edges representing transitions between states

@ Labels on edges representing “actions”: Labeled Transition Systems.

@ Vertices associated with sets of propositions: Kripke structures.
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Property Specification: Temporal Logics |
Computational Tree Logic (CTL):

o = p|leAp | pVe Propositions, logical connectives
| E¢ | A¢ State formulae
o — Xo | p1 Uga | ¢1R ¢2  Path formulae

@ Semantics of the CTL is usually given in terms of computation trees
of Kripke Structures.

@ The meaning of path formulae are given in terms of sets of paths
(runs, or sequences of states) of the system.

@ Informally, ¢1 U ¢> holds in a run means ¢ holds in every state of
the run until a state where 2 holds.

@ Derived path formulae F ¢ and G ¢ are often used for simplicity.
Fo=ttUoyp
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Property Specification: Temporal Logics Il

Let K be a Kripke structure and AP(s) denote the set of atomic
propositions associated with state s in K.
o K,skE=pif pe AP(s)
o KisEpi Ao if K;s =1 and K, s = ¢o. (sim. for “V")
o K,s = A¢ if for every path 7 in K with init(r) =s, K, 7 |= ¢.
K,s = E¢ if for some path 7 in K with init(7) =s, K, 7 = ¢.
K,m=Xpif K,m[1] = ¢
K,mE¢1 U ppif m=s1,%,..., and 3i > 1 such that

o K,S,’ ':@2, and
o V1< j<i, K, sil=¢1.
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Property Specification: Temporal Logics Il

Modal Mu-Calculus

o — tt | opA¢ | ¢V logical connectives

| (a)p Diamond formulae

| [ao]e Box formulae

| X Formula variable

| uX. Least fixed point formula

| vX.p Greatest fixed point formula

Semantics of modal mu-calculus formulae are defined over LTSs, with o
ranging over the actions of the LTS.
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Property Specification: Temporal Logics IV

Examples in the “assembly language of propositional temporal logics”:

@ "a" action is eventually possible:
pX.((a)tt) v ({(=)X)
@ “b" action is eventually possible from each state:
VY [-1Y A (X ((B)EE) V ((=)X)
© '¢” action is enabled infinitely often on all infinite paths:

VY X [-(((S) et A YV X)
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System Specification: Process Languages

@ Core languages such as CCS, pi-calculus etc. that elucidate the
meaning of interleaving, synchronization, communication etc.

@ Value-passing languages add variables and values to the core to allow
succinct specifications.

@ Meanings of specifications in such languages are given in terms of
LTSs and Kripke Structures (“translating them down").

@ Derived LTSs may not be finite state.

@ Richer languages permit description of

o Push-down systems (analogous to recursive programs)
o Parameterized systems (where aspects of a systems, e.g. number of
processes of a specific family, may be only symbolically specified).
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LP Encodings
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A Model Checker for CTL: |

CTL formulae represented as Prolog Terms of the following forms:
e prop(P) atomic propositions
e neg(F), and(Fy, F2), or(Fi1, F2): logical connectives.

e ex(F), eu(F1, F2), ex(F1, F2): formulae with existential path
quantifier

e ax(F), au(Fy, F), ar(F1, F2): formulae with universal path quantifier
Kripke structure represented as a set of Prolog facts:

e trans(S,T): transition from state S to state T.

@ holds(S,P): proposition P holds at state S.

Autumn School '16 Verification and PLP, Part 1 17 / 53



LP Encodings
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A Model Checker for CTL: Il

1 % Propositions and their negations

2 models(S, prop(P)) :- holds(S, P).

3 models (S, neg(prop(P))) :- not holds(S, P).

4

s % Conjunction and Disjunction

6 models(S, and(F1,F2)) :- models(S, F1), models(S, F2).
7 models(S, or(F1, F2)) :- models(S, F1); models(S, F2).
8

o % EX:

10 models(S, ex(F)) :- trans(S, T), models(T, F).

Autumn School '16 Verification and PLP, Part 1 18 / 53



LP Encodings
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A Model Checker for CTL: Il

@ Ep1 U py can be “unrolled” as:

2V (p1 A (EX (Ep1Ug2)))

where the unrolling is finite (least fixed point).
@ Hence:
11 % EU

» models(S, eu(F1, F2)) :-
13 models (S, or(F2, and(F1, ex(eu(F1, F2))))).

-

Similarly:

1w % AU
s models(S, au(Fi, F2)) :-
16 models(S, or(F2, and(F1, ax(au(F1i, F2))))).

=

Autumn School '16 Verification and PLP, Part 1 19 / 53



LP Encodings
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A Model Checker for CTL: Il

0o Ap=-E-¢ and —Xp=X-p

@ But encoding ax in terms of negation and ex means our unrolling of
au will result in a non-stratified program.

@ Hence:

17 % AX

18 models (S, ax(F)) :-

19 findall(T, trans(S, T), L),
20 all_models(L, F).

where

all_models([], F).
2> all_models([S|L], F) :- models(S, F), all_models(L, F).

-
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LP Encodings
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A Model Checker for CTL: IV

o (p1R w2) = (mp1)U (—2)
@ Hence:

n % ER

» models(S, er(F1i, F2)) :-

23 negate(F1, NF1),

24 negate(F2, NF2),

25 tnot models(S, au(NF1, NF2)).

where negate(F, NF) binds NF to the negation normal form of
neg(F).
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Tabled Evaluation for Model Checking

@ Tabled resolution is needed for termination
o Note unrolling of eu and au
@ models/2 is not statically stratified
o Note use of negative dependency in treatment of er.
@ But query evaluation will be dynamically stratified
o Expansion of er using au is not unrolling, and does not lead to cycles.
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LP Encodings
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Complexity of CTL Model Checking

e models/2: Given a Kripke structure with |S| states, and a formula of
size ||, there are at most O(|S|.|¢|) distinct calls to models/2.

@ Each call is ground, so as at most one answer.

o If |T| is the size of the Kripke structure (max. of number of states
and transitions), then query evaluation takes O(| T|.|¢|) steps.

@ Access into the call tables may take an additional O(|p|) time per
access.

@ But with hash-consing (or any other suitable representation of a
formula term), table access time will be O(1) with perfect indexing.

@ Hence model checking can be done in O(|T|.|¢]|) time and (|S].|¢])
space.

Autumn School '16 Verification and PLP, Part 1 23 /53
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Viodel Checking

Model Checker for the Modal Mu-Calculus: |

Equational form of the modal mu-calculus.
o uX.({a)tt) vV ((=)X)
written as x £ ((a)tt) V ((—)x)
o vY.[-]Y A (uX.((b)tt) V ((—) X))
written as a set of two equations:

[~]y Ax

((bytt) v ({=)x)

= s

o vY.uX.[-](({(c)tt A Y)V X)
written as a set of two parameterized equations:

Autumn School '16
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LP Encodings
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Model Checker for the Modal Mu-Calculus: 1l

@ Assume equational form of mu-calculus formulas are represented by a
set of facts. The RHS of equations are represented a Prolog terms.

1 % Propositions and their negations

>  models(S, tt).

3  models(S, and(F1,F2)) :- models(S, F1), models(S, F2).
4 models(S, or(F1, F2)) :- models(S, F1); models(S, F2).

6 % Diamond:
7 models(S,diam(A,F)) :- trans(S, A, T), models(T, F).

o % Box :
10 models(S, box(A,F)) :-
11 findall(T, trans(S, A, T), L), all_models(L, F).

@ Note the action label “A" in the transition relation.
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LP Encodings
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Model Checker for the Modal Mu-Calculus: trial

@ Assume equational form of mu-calculus formulas are represented by a
set of facts of the form

e 1fp(x, ) for u equations, and
e gfp(x,p) for v equations.

2 % LFP formula

s models(S, form(X)) :- 1lfp(X, F), models(S, F).
14

s % GFP formula

16 models(S, form(X)) :-

Ll

-

-

17 gfp(X, F),
18 negate(F, NF),
19 tnot models(S, NF).
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LP Encodings
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Alternation Freedom and Stratification

@ As in the case of CTL model checker, the models/2 predicate
defining the mu-calculus model checker is not statically stratified.

@ But for formulae with a single fixed point, or alternation-free fixed
points, query evaluation is dynamically stratified.

@ For formulae with alternation, query evaluation may not even be
dynamically stratified.

o One strategy is to generate a “residual” program that retains the cycles
through negation, and generate a preferred stable model of the residue.
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LP Encodings
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Complexity of Modal Mu-Calculus Model Checking

Time and space complexity of query evaluation over models/2 can be
analyzed along the same lines as used for CTL.
@ For an alternation-free formula ¢, model checking can be done in

o O(|S|.l¢|) space, where |S| is the number of states in the LTS.
o O(|T|.|¢]) time, where | T| is the size of the LTS.
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Beyond Finite-State Model Checking: |

@ Use constraints to represent sets of equivalent states.
o Finite number of equivalence classes implies termination (e.g. classical
timed automata).
o Allow data variables in Property Specification that may unify with
data fields in system specification.

e Encoding is agnostic to which side has variables.
e Enables verification of a class of data independent systems.
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LP Encodings
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Beyond Finite-State Model Checking: Il

@ Use Forall-Exists quantified Horn Clauses as a constraint language
with powerful (albeit incomplete) solvers.

@ A number of model checking problems, including CTL model
checking of infinite state systems, can be cast as a satisfaction
problem over the above constraint language.
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Logic Programs

+ = Query Answers

Facts
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Probabilistic Logic Programs

+ = Query Answers

Probabilistic Facts

ICL, PRISM, ProblLog, ...
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Independent Choice Logic (ICL)

Poole’s ICL forms a precursor to modern PLP languages.
An ICL theory has:
@ An acyclic logic program

@ A collection of atom sets, e.g. {{ao, a1}, {bo, b1, b2}}, called the
choice space.

o Each set in the collection can be viewed as a random variable; each
atom in the set is a possible outcome of the variable.

@ Distributions over the choice space.

Semantics of ICL given in terms of the distributions over the choice space.
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Stochastic Logic Programs (SLP)

@ SLP [Muggleton et al] defines a probability distribution over program
clauses.

@ Probability of a query answer is computed based on the probabilities
of clauses used during resolution.

@ SLP is expressive enough to represent a large class of non-recursive
stochastic systems (e.g. non-recursive Stochastic Context Free
Grammars).
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PRISM

A language for probabilistic logic programming with system for inference
and parameter learning (Sato et al, since '99).
@ Logic programs with a set of probabilistic facts: msw(X, I, V),
where

e X is a discrete-valued random process
e Vis a value generated by the random process
o I is the instance number, distinguishing different trials.

@ Random variables generated by the same random process are i.i.d.

@ Random variables generated by distinct random processes are
independent.

e Has a well-defined model-theoretic (distribution) semantics, and an
operational semantics based on tabled resolution.
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Distribution semantics

% “a” is a boolean random process

p(X) :- msw(a, 0, X),
msw(a, 1, Y),
X=Y.

values(a, [t,f]).
set_sw(a, [0.3,0.7])

Autumn School '16 Verification and PLP, Part 1
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Distribution semantics

% “a” is a boolean random process

p(X) :- msw(a, 0, X),
msw(a, 1, Y), @ Outcomes of random processes
X=Y. define worlds.

values(a, [t,f]).
set_sw(a, [0.3,0.7])

Worlds:
msw(a,0,t) msw(a,0,t)
msw(a,1,t) msw(a,1,f)
msw(a,0,f) msw(a,0,f)
msw(a,1,t) msw(a,1,f)

Autumn School '16 Verification and PLP, Part 1 35 /53
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Distribution semantics

% “a” is a boolean random process

p(X) :- msw(a, 0, X),
msw(a, 1, Y), @ Outcomes of random processes
X=Y. define worlds.

values(a, [t,f]).

@ The probability of a world is
set_sw(a, [0.3,0.7])

assigned based on the probabilities

Worlds: of the outcomes in the world.
msw(a,0,t) msw(a,0,t)
msw(a,1,t) msw(a,1,f)
0.09 0.21
msw(a,0,f) msw(a,0,f)
msw(a,1,t) msw(a,1,f)
0.21 0.49

Autumn School '16 Verification and PLP, Part 1 35 /53



Probabilistic LP

0000@00000000

Distribution semantics

% “a” is a boolean random process

p(X) :- msw(a, 0, X),
msw(a, 1, Y), @ Outcomes of random processes
X=Y. define worlds.

values(a, [t,f]).

@ The probability of a world is
set_sw(a, [0.3,0.7])

assigned based on the probabilities

Worlds: of the outcomes in the world.
msw(a,0,t) msw(a,0,t) @ In each world, msws form a set of
msw(a,1,t) msw(a,1,f) logical (non-probabilistic) facts.

0.09 0.21
msw(a,0,f) msw(a,0,f)
msw(a,1,t) msw(a,1,f)

0.21 0.49
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Probabilistic LP

Distribution semantics

% “a” is a boolean random process

p(X) :- msw(a, 0, X),
msw(a, 1, Y), @ Outcomes of random processes
X=Y. define worlds.

values(a, [t,f]).

@ The probability of a world is
set_sw(a, [0.3,0.7])

assigned based on the probabilities

Models: of the outcomes in the world.
msw(a,0,t) msw(a,0,t) @ In each world, msws form a set of
msw(a,1,t) msw(a,1,f) logical (non-probabilistic) facts.

0.09 0.21 @ Distribution over least models:
p(t) . .
the least model in each world is
msw (a,0,f) msw(a,0,f) assigned the probability of that
msw(a,1,t) msw(a,1,f) WOI’EI] P y
0.21 0.49 ’
p(H)
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ProblLog

o At its simplest, a ProbLog program resembles a Prolog program
where each clauses is annotated with a discrete probability value.

@ These annotations define a distribution of (non-probabilistic)
programs, resulting in a distribution semantics.

@ ProblLog and PRISM program, when restricted to discrete
distributions, can be translated to one another, with the same
distribution semantics.

@ Problog query evaluation materializes explanations in non-trivial
structures, and is not subject to PRISM-style independence and
mutual exclusion restrictions.
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Probabilistic Logic Programs: A quick tour

@ Logic-based representation of statistical models
e Examples include BLPs (Kersting and De Raedt, '00), PRMs
(Friedman et al, '99), MLNs (Richarson and Domingos, '06).
o The underlying statistical network, derived from logical /statistical
specifications, is finite.
@ Statistical inference over proof structures

o Conservative extension to traditional logic programs, with explicit or
implicit use of random variables and processes.

o Examples include PRISM (Sato and Kameya, '99), ICL (Poole, '93),
CLP(BN) (Santos Costa et al, '03), ProbLog (De Raedt et al, '07),
LPAD (Vennekens et al, '09).

o In terms of expressive power, PRISM, ProbLog and LPAD coincide;
however, they use different inference procedures.
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Evaluation in PRISM — |

Explanations

. ) q(t)
% Finite Mixture Model
q(Y) :- msw(a, 0, X),
msw(b(X), 0, Y).
msw(a, t) msw(a, f)

values(a, [t,f]).

values(b(1), [t,f]).
set_sw(a, [0.3,0.7]) msw(b(t), t) msw(b(f), t)
set_sw(b(t), [0.6,0.4])
set_sw(b(£f), [0.5,0.5])
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Evaluation in PRISM — |

Explanations and Probabilities
. ) q(t)
% Finite Mixture Model
a(¥) :- msw(a, 0, X),
msw(b(X), 0, Y).
msw(a, t) msw(a, f)

values(a, [t,f]). 0.3
values(b(.), [t,f1). )
set_sw(a, [0.3,0.7]) msw(b(t), t) msw(b(f), t)
set_sw(b(t), [0.6,0.4])
set_sw(b(£f), [0.5,0.5]) 0.6

O O

0.18
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Evaluation in PRISM — |

Explanations and Probabilities
. ) q(t)
% Finite Mixture Model
a(¥) :- msw(a, 0, X),
msw(b(X), 0, Y).
msw(a, t) msw(a, f)
values(a, [t,f]).
values(b(.), [t,f]). 0.3 0.7
set_sw(a, [0.3,0.7]) msw(b(t), t) msw(b(f), t)
set_sw(b(t), [0.6,0.4])
set_sw(b(f), [0.5,0.5]) 0.6 0.5
O O
0.18 0.35
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Evaluation in PRISM — |

Explanations and Probabilities
() 0.53
% Finite Mixture Model 4
a(¥) :- msw(a, 0, X),
msw(b(X), 0, Y).
msw(a, t) msw(a, f)
values(a, [t,f]).
values(b(.), [t,f]). 0.3 0.7
set_sw(a, [0.3,0.7]) msw(b(t), t) msw(b(f), t)
set_sw(b(t), [0.6,0.4])
set_sw(b(f), [0.5,0.5]) 0.6 0.5
O O
0.18 0.35
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@ Explanation of an answer: At a high level, the set of msw's used in a
derivation of the answer.
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@ Explanation of an answer: At a high level, the set of msw's used in a

derivation of the answer.
@ The probability of an explanation is the product of the probabilities of
random variables in the explanation.
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@ Explanation of an answer: At a high level, the set of msw's used in a
derivation of the answer.
@ The probability of an explanation is the product of the probabilities of
random variables in the explanation.
o If the msw's in a derivation are all independent, then the probability of

the explanation can be computed without materializing it.
[Independence assumption]
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@ Explanation of an answer: At a high level, the set of msw's used in a
derivation of the answer.
@ The probability of an explanation is the product of the probabilities of
random variables in the explanation.
o If the msw's in a derivation are all independent, then the probability of
the explanation can be computed without materializing it.
[Independence assumption]
@ The probability of an answer is the probability of the set of
explanations of the answer.
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@ Explanation of an answer: At a high level, the set of msw's used in a
derivation of the answer.
@ The probability of an explanation is the product of the probabilities of
random variables in the explanation.
o If the msw's in a derivation are all independent, then the probability of
the explanation can be computed without materializing it.
[Independence assumption]
@ The probability of an answer is the probability of the set of
explanations of the answer.

o If explanations are pairwise mutually exclusive, then the probability of
the set of explanations is the sum of probabilities of each explanation.
[Mutual Exclusion assumption]
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@ Explanation of an answer: At a high level, the set of msw's used in a
derivation of the answer.
@ The probability of an explanation is the product of the probabilities of
random variables in the explanation.
o If the msw's in a derivation are all independent, then the probability of
the explanation can be computed without materializing it.
[Independence assumption]
@ The probability of an answer is the probability of the set of
explanations of the answer.
o If explanations are pairwise mutually exclusive, then the probability of
the set of explanations is the sum of probabilities of each explanation.
[Mutual Exclusion assumption]
o If the set of explanations is finite, then this sum can be effectively

computed.
[Finiteness assumption]
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Generalizations

@ PRISM's inference procedure uses the Independence, Mutual
Exclusion and Finiteness assumptions to compute probabilities of
answers without materializing the explanations.
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Generalizations

@ PRISM's inference procedure uses the Independence, Mutual
Exclusion and Finiteness assumptions to compute probabilities of
answers without materializing the explanations.

o Inference mimics the best known algorithms for certain statistical
models (e.g. Viterbi alg. for HMMs).
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Generalizations

@ PRISM's inference procedure uses the Independence, Mutual
Exclusion and Finiteness assumptions to compute probabilities of
answers without materializing the explanations.

o Inference mimics the best known algorithms for certain statistical
models (e.g. Viterbi alg. for HMMs).

@ ProbLog and PITA (an implementation of LPAD) use BDDs to
represent the set of explanations, and consequently remove
Independence and Mutual Exclusion assumptions.
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Generalizations

@ PRISM's inference procedure uses the Independence, Mutual
Exclusion and Finiteness assumptions to compute probabilities of
answers without materializing the explanations.

o Inference mimics the best known algorithms for certain statistical
models (e.g. Viterbi alg. for HMMs).

@ ProbLog and PITA (an implementation of LPAD) use BDDs to
represent the set of explanations, and consequently remove
Independence and Mutual Exclusion assumptions.

o Finiteness assumption is still needed since the BDDs need to be
effectively constructed.
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Evaluation via Knowledge Compilation: |

@ Explanations can be viewed as residues of partially evaluating all but
the probabilistic facts.
@ Each set of explanations can be mapped to a Boolean propositional
formula.
o Each explanation is a set (conjunction) of random variable valuations.
o Each explanation in an explanation set (i.e. disjunction) supports the
derived answer.
@ Explanations can be materialized more succinctly using other Boolean
formula representations, such as Deterministic Disjunctive Negation
Normal Forms (dDNNFs), etc.
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Evaluation via Knowledge Compilation: Il

@ ProblLog2 uses the more succinct representation of explanations.

o Weighted model count is a measure to each Boolean formula, defined
a weighted sum of (the number of) satisfiable assignments.

@ Weighted model counting can be done in time polynomial in the size
of a Boolean formula’s dDNNF representation.
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Finiteness Assumption and PRISM

@ In ICLP’12, Sato and Meyer present a method to generate equations
from probabilistic programs with loops.

@ This mechanism essentially hides the “instance” variable in msws.

@ |t proceeds under the assumption that different occurrences along a

single explanation are independent.
e This assumption holds for individual runs of a Markov Chain or prefix
probability computations in Probabilistic CFGs, but does not satisfied

in general.
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Probabilistic Transition Systems in PRISM

Example Markov Chain
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Probabilistic Transition Systems in PRISM

/4 Encoding as a Probabilistic LP
Example Markov Chain trans(8, I, T) :-msw(t(8), I, T).
/4 Ranges

;- values(t(s0), [s0, s1, s2]).
:— values(t(sl), [s1, s3, s4]).
:— values(t(s4), [s3]).

/4 Distributions

set_sw(t(s0), [0.5, 0.3, 0.2]).
set_sw(t(s1), [0.4, 0.1, 0.51).
set_sw(t(s4), [1]).
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Probabilistic Transition Systems in PRISM

Example Markov Chain

%4 Encoding as a Probabilistic LP
trans(S, I, T) :-msw(t(S), I, T).

% Encoding of Reachability
reach(S, I, T) :-
trans(S, I, U),
reach(U, next(I), T).
reach(S, _, S).
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Probabilistic Model Checking as Query Evaluation

@ What is the probability of reaching
s3 via some path starting at sp?

trans(S, I, T) :-
msw(t(S), I, T).

reach(S, I, T) :-
trans(S, I, U),
reach(U, next(I), T).
reach(S, _, 9).
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Probabilistic Model Checking as Query Evaluation

@ What is the probability of reaching
s3 via some path starting at sp?

@ |?7- prob(reach(sy, 0, s3)).

@ Evaluation of the above query will
not terminate!

trans(S, I, T) :-
msw(t(S), I, T).

reach(S, I, T) :-
trans(S, I, U),
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Probabilistic Model Checking as Query Evaluation

@ What is the probability of reaching
s3 via some path starting at sp?

@ |?7- prob(reach(sy, 0, s3)).

@ Evaluation of the above query will
not terminate!

o There are infinitely many

explanations for reach(sy, 0, s3)
trans(S, I, T) :-

msw(t(S), I, T).

reach(S, I, T) :-
trans(S, I, U),
reach(U, next(I), T).
reach(S, _, 9).
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Probabilistic Model Checking as Query Evaluation

@ What is the probability of reaching
s3 via some path starting at sp?

@ |?7- prob(reach(sy, 0, s3)).

@ Evaluation of the above query will
not terminate!

o There are infinitely many
explanations for reach(sy, 0, s3)

trans(S, I, T) :-

msw(t (), I, T). @ Distribution semantics is well-defined

and gives the correct probability, but
reach(s, I, T) :- standard inference methods cannot
trans(S, I, U), evaluate this query.
reach(U, next(I), T).
reach(S, _, 9S).
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Probabilistic Model Checking as Query Evaluation

trans(S, I, T) :-
msw(t(S), I, T).

reach(S, I, T) :-
trans(S, I, U),
reach(U, next(I), T).
reach(S, _, 9).

Autumn School '16

Verification and PLP, Part 1

@ What is the probability of reaching

s3 via some path starting at sp?
| ?7- prob(reach(sy, 0, s3)).

Evaluation of the above query will
not terminate!

o There are infinitely many
explanations for reach(sy, 0, s3)

Distribution semantics is well-defined
and gives the correct probability, but
standard inference methods cannot
evaluate this query.

More recent extension in PRISM
removes finiteness assumption under
restricted conditions.
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Explanations for reach(s0,0,s83):
@ msw(t(s0), 0, s1), msw(t(sl), next(0), s3).

@ msw(t(s0), 0, s0), msw(t(s0), next(0), s1),
msw(t(sl), next(next(0)), s3).

trans(S, I, T) :-

msw(t(8), 1, T). o msu(t(s0), 0, s1), msw(t(s1), next(0), sl),

t
reach(s, I, T) - msw(t(sl), next(next(0)), s3).

trans(S, I, U),
reach(U, next(I), T).
reach(S, _, S).
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Note: prob(reach(s0,0,s3)) is same as
prob(reach(s0,H,s3)) for any H.

trans(S, I, T) :-
msw(t(S), I, T).

reach(S, I, T) :-
trans(S, I, U),
reach(U, next(I), T).
reach(S, _, S).
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Note: prob(reach(s0,0,s3)) is same as
prob(reach(s0,H,s3)) for any H.

We can use a grammar to represent the set
of explanations for the abstracted query.

trans(S, I, T) :-
msw(t(S), I, T).

reach(S, I, T) :-
trans(S, I, U),
reach(U, next(I), T).
reach(S, _, S).
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Note: prob(reach(s0,0,s3)) is same as
prob(reach(s0,H,s3)) for any H.

We can use a grammar to represent the set
of explanations for the abstracted query.

expl(reach(s0, H,s3)) —

trans(S, I, T) :- [msw(t(s0), H, s0)],
msw(t(S), I, T). expl(reach(s0, next(H), s3)).
expl(reach(s0, H,s3)) —
reach(S, I, T) :- [msw(t(s0), H,s1)],
trans(s, I, ), expl(reach(sl, next(H), s3)).

reach(U, next(I), T).
reach(S, _, S).
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Explanations

expl(reach(s0, H,s3)) —
[msw(t(s0), H, s0)],
expl(reach(s0, next(H),s3)).

expl(reach(s0, H,s3)) —
[msw(t(s0), H,s1)],
expl(reach(sl, next(H),s3)).

is similar to the stochastic grammar:
0.5
50 — 50
0.3
50 — 51

trans(S, I, T) :-
msw(t(S), I, T).
Answer probability of reach(s0,H,s3) is
reach(S, I, T) :- the language probability of the above SCFG
trans(S, I, U),
reach(U, next(I), T).
reach(S, _, S).

and is the least solution to equations of the
form:
xo = 0.5xp + 0.3x7
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Abstraction for temporal programs

@ Instance and Non-Instance variables belong to distinct sorts.
Variables of one sort cannot be unified with those of the other.

@ Only terms containing instance variables can be used as instance
arguments of msw.

@ For any clause of a predicate with an instance argument, the instances
on the LHS of the clause must be a subterm of instances on the RHS.
This imposes an ordering on time.
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Temporally Well-Formed Programs

@ A probabilistic logic program with annotations of the form
temporal(p/n —i).
e Example: temporal (reach/3-2)
e reach is a temporal predicate
e The second argument of an atom with root reach is its instance
argument.

@ For a rule defining a temporal predicate, the instance argument of the head
must be a subterm of instance arguments of every temporal body predicate.
o Example: reach(S, I, T) :-
trans(S, I, U),
reach(U, next(I), T).

@ Instance arguments are not bound to non-instance arguments, or vice versa.
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Temporally Well-Formed Programs

@ A probabilistic logic program with annotations of the form
temporal(p/n —i).
e Example: temporal (reach/3-2)
e reach is a temporal predicate
e The second argument of an atom with root reach is its instance
argument.

@ For a rule defining a temporal predicate, the instance argument of the head
must be a subterm of instance arguments of every temporal body predicate.
o Example: reach(S, I, T) :-
trans(S, I, U),
reach(U, next(I), T).

@ Instance arguments are not bound to non-instance arguments, or vice versa.

@ In explanation grammars of temporally well-formed programs, msw(r, t, x)
will always be independent of any msw derived from non-terminal expl(p)

o if t is a proper subterm of p's instance argument.
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Factored Equation Diagrams

Not all explanation grammars can be translated directly to stochastic

grammars.
@ Consider the query

reach(s0, H, s3); reach(sO, H,
s4).

@ The grammar will have productions of the
form:
expl(reach(s0, H, s3); reach(s0, H, s4)) —
expl(reach(s0, H, s3)).
expl(reach(s0, H, s3); reach(s0, H, s4)) —
expl(reach(s0, H, s4)).

@ The two productions are not mutually
exclusive.

We can factor such grammars using Factored Explanation Diagrams
(FEDs), which are similar to BDDs.
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Structure of FEDs

FED is a labeled DAG with
@ tt and ff as leaf nodes

@ msw(r, h) is an n-ary node if r is a
msw(t (s0), H)

random process with n possible . §
s s
outcomes; /\

outgoing edges are labeled with the expl (reach(s0,s3), expl (reach(sl,s3),
outcomes next (H)) next (H))
. . 0 1
@ expl(t, h) is a binary node; »4
outgoing edges are labeled 0 and 1. £ te

@ If there is an edge from x; to xo,
then x; < xp via a specially defined
partial order relation.
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Operations on FEDs

Boolean operations “A” and “V" can be performed on FEDs along the
same line as on BDDs, with one significant change:

@ BDD operations are based on a total node order.

@ We only have a partial node order for FEDs.

@ When we recursively push operations down the diagram, we may
encounter incomparable nodes.

@ We then generate a placeholder merge node, and process merges
separately.
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Operations on FEDs

Boolean operations “A” and “V" can be performed on FEDs along the
same line as on BDDs, with one significant change:

@ BDD operations are based on a total node order.
@ We only have a partial node order for FEDs.

@ When we recursively push operations down the diagram, we may
encounter incomparable nodes.

@ We then generate a placeholder merge node, and process merges
separately.

o Note that msw nodes are always comparable; so a merge will involve
at least one expl node.

@ We expand (one of) the expl node(s) with its definition, and perform
the postponed operation.
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FEDs to Equations

The probability of a set of explanations is computed by generating and solving a

set of equations from its FED.
FED for expl(reach(s0,s3), H):

msw (t (s0), H)

w0 o Xo = too*Xo
+to1 * X1
expl (reach (s0,s3), expl (reach(sl,s3),
next (H)) next (H)) to = 0.5
N/ th = 03
f£ tt
FED for expl(reach(s1,s3), H): _
msw (t (s1), H) X1 = tin*xy
s1 s3 l\ +t13 * X3
+t14 * X
expl (reach (sl,s3), expl (reach (s3,s3), expl (reach (s4,s3),
® next (H)) ® next (H)) e next (H)) ti11 = 0.4
0 : ° L > 1 tiz = 0.1
t = 05
££ tt 14
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FEDs to Equations

The probability of a set of explanations is computed by generating and solving a

set of equations from its FED.
FED for expl(reach(s0,s3), H):

msw (t (s0), H)

w0 o Xo = too*Xo
+to1 * X1
expl (reach (s0,s3), expl (reach(sl,s3),
next (H)) next (H)) to = 0.5
N/ th = 03
f£ tt
FED for expl(reach(s1,s3), H): _
msw (t (s1), H) X1 = tin*xy
s1 s3 l\ +t13 * X3
+t14 * X
expl (reach (sl,s3), expl (reach (s3,s3), expl (reach (s4,s3),
® next (H)) ® next (H)) e next (H)) ti11 = 0.4
0 : ° L > 1 tiz = 0.1
t = 05
££ tt 14

The least solution to these monotone polynomial equations gives the probability

of the set of explanations.
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Probabilistic Inference for Temporal Queries: Summary

@ The set of explanations for a temporal query is conceptually treated
as a language defined by a probabilistic grammar.

@ This grammar is transformed and materialized as a Factored
Explanation Diagram (FED) which ensures that

e Distinct productions (paths in the diagram) are mutually exclusive.
e Trials of random variables in a path are independent

@ In other words, an FED is a stochastic grammar for he language of
explanations.

@ Answer probability is computed as the language probability of the
grammar: by solving a system of monotone polynomial equations.
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