
Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

Verification and Probabilistic Logic Programming

C. R. Ramakrishnan, Andrey Gorlin

Stony Brook University

ICLP 2016 Autumn School

Autumn School ’16 Verification and PLP, Part 2 1 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

System Description: I

s
0

s
3

s
4

s
2

s
1

1

0.1

0.3 0.2

0.5

0.4

0.5

Discrete-Time Markov Chains (DTMCs)

Probabilistic automata where transitions out
of a state are governed by a discrete
distribution.

Sets of atomic propositions may be associated
with individual states.

Next-state distribution depends only on the
current state and not on the past (given the
current state).

A variety of process languages are “compiled”
into DTMCs.

Autumn School ’16 Verification and PLP, Part 2 2 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

System Description: II

S0

S1 S2

S3 S4

2

1.0

1.5

0.5

0.5

1.0

Continuous-Time Markov Chains (CTMCs)

Probabilistic automata where transitions out
of a state have associated rates.

The rates govern the time at which a
transition “fires” (distributed exponentially).

An execution is extended by taking first
transition to fire from current state.

Analysis of CTMCs is often done by analyzing
an associated DTMC.

We will focus on discrete-time probabilistic
systems in this lecture.

Autumn School ’16 Verification and PLP, Part 2 3 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

System Description: III

S0

• •

S1 S2

•

a b

0.4
0.6 0.8

0.2

a, b a

b
0.3

0.7

Markov Decision Processes (MDPs)

Discrete-time probabilistic automata where
each state has a set of uniquely labeled
transitions.

Each transition specifies a distribution of
destination states (in general, not just a single
state).

Combines non-deterministic choice of
transitions with probabilistic choice of
destination based on a chosen transition.

Used widely to model behaviors of agents.

Autumn School ’16 Verification and PLP, Part 2 4 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

System Description: IV

en ex
1

b
1

b : A
1

A

b
2

b : A

.5

.5

Recursive Markov Chains (RMCs)

Models of Probabilistic Programs:
Extension of DTMCs with “Calls” to
model non-tail-recursive procedures.

Each RMC has a distinguished “Entry”
state (which is reached when that RMC is
“called”).

Each RMC may have one or more “Exits”,
which can be used to model return values.

Autumn School ’16 Verification and PLP, Part 2 5 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

Reactive Probabilistic Labeled Transition Systems (RPLTS)

s
5

s
1

s
6

s
4

s
2

s
3

a

3/43/4

1/4 1/4

a

a

aa

b c

Automata has finite number of
states.

Each state offers a finite number
of labeled actions.

Each action has a distribution of
states: taking an action chooses a
destination state according to the
given distribution.

Actions are triggered by an
external agent; the system reacts
to actions.

[Cleaveland, Iyer & Narasimha, TCS’05]

Autumn School ’16 Verification and PLP, Part 2 6 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

RPLTS vs MDPs

s
5

s
1

s
6

s
4

s
2

s
3

a

3/43/4

1/4 1/4

a

a

aa

b c

RPLTS and MDPs are structurally
identical but are interpreted
differently.

RPLTS semantics is given in terms
of a distribution over computation
trees, where

Probabilistic choices are first
resolved in order to construct
computation trees, and
The trees, in turn, capture the
available non-deterministic
choices.

Autumn School ’16 Verification and PLP, Part 2 7 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

Properties of Probabilistic Systems

Reachability: Find the probability that a run of the system
eventually reaches a given state.
Related problem: termination.

Probabilistic Temporal Logics: Formulae in such logics express
complex temporal conditions on the behaviors of a system.
Behaviors may be

runs: linear-time logics
trees: branching-time logics

The problem is to find the probability of behaviors that satisfy the
temporal conditions.

Optimization: For MDPs and other systems with non-determinism,
find the min. or max. probability of a specified behavior.

Autumn School ’16 Verification and PLP, Part 2 8 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

Probabilistic Computation Tree Logic (PCTL)

PCTL is a logic for specifying properties of DTMCs.

ϕ → p | ϕ ∧ ϕ | ϕ ∨ ϕ Propositions, logical connectives
| Pr(φ) > b | Pr(φ) ≥ b State formulae

φ → Xϕ | ϕ1 U ϕ2 Path formulae

State formulas are non-probabilistic; path formulas have associated
probabilities.

Used as the property specification language by many systems,
including the Prism Model Checker.

Example: Pr(p U q) > 0.75
Is the probability of a run where p holds until q more than 0.75?

Autumn School ’16 Verification and PLP, Part 2 9 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

Generalized Probabilistic Logic (GPL)

An expressive, mu-calculus-based, logic for branching-time
probabilistic processes.

Semantics of GPL is given in terms of computation trees of RPLTSs.

This logic is strictly more expressive than PCTL*.

Reachability and termination in RMCs can be reduced to GPL model
checking over RPLTSs.

We can construct a model checker for GPL by directly encoding its
semantics as a probabilistic logic program.

Autumn School ’16 Verification and PLP, Part 2 10 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

GPL

Usual mu-calculus-like modalities and fixed points (called “state
formulae”) in GPL.

State formulae, φ, have a boolean interpretation:

φ = φ ∨ φ | · · · | pr>Bψ | pr≥Bψ | · · · propositions . . .

Fuzzy formulae ψ, analogous to PCTL path formulae, have
probabilistic interpretation:

ψ = ψ ∨ ψ | ψ ∧ ψ | 〈a〉ψ | [a]ψ | φ | X

Alternation-free fixed point equations of the form X =µ ψ and
X =ν ψ.

Autumn School ’16 Verification and PLP, Part 2 11 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

System Definitions as PLP

Recall encoding DTMCs in PRISM:

% DTMC Transition Relation
trans(S, I, T) :- msw(t(S), I, T).

where switch t(s) encodes the transition distribution from state s.
For MDPs and RPLTSs, each action gives a distribution. This is
encoded as facts of the following form:

% MDP/RPLTS Action Definitions

action(S , A, SW)
where “S” is the source state, “A” is a transition label, and SW is a
switch whose distribution models the action’s distribution.
MDP/RPLTS transitions are defined by:

% DTMC Transition Relation
trans(S, A, I, T) :- action(S, A, SW), msw(SW, I, T).

Autumn School ’16 Verification and PLP, Part 2 12 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

Encoding the PCTL Model Checker

State Formulae

1 % Propositions
2 models(S, prop(P)) :- holds(S, P).

3

4 % Logical connectives
5 models(S, neg(F)) :- tnot models(S, F).

6 models(S, and(F1, F2)) :- models(S, F1), models(S, F2).

7

8 % Path Quantifiers
9 models(S, pr(F, gt, B)) :-

10 prob(pmodels(S, F), P),

11 P > B.

12 models(S, pr(F, geq, B)) :-

13 prob(pmodels(S, F), P),

14 P >= B.

Autumn School ’16 Verification and PLP, Part 2 13 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

Encoding the PCTL Model Checker

Path Formulae

Note that X and U operators will access the transition relation.

Outcomes of a transition at different time steps need to be distinguished.

15 % Add extra temporal argument
16 pmodels(S, F) :- pmodels(S, F, _).

17

18 % Next
19 pmodels(S, next(F), H) :- trans(S, H, T), models(T, F).

Autumn School ’16 Verification and PLP, Part 2 14 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

Encoding the PCTL Model Checker

Path Formulae (contd.)

20 % Until (base case):
21 pmodels(S, until(F1, F2), H) :-

22 pmodels(S, or(F2, and(F1, next(until(F1,F2))))).

23

24 % Until (unrolled, recursive case)
25 pmodels(S, until(F1, F2), H) :-

26 models(S, F1), trans(S, H, T),

27 pmodels(T, until(F1, F2), next(H)).

28

29 % Note the temporal argument in pmodels/3:
30 temporal(pmodels/3-3).

Autumn School ’16 Verification and PLP, Part 2 15 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

Model Checking in PLP

Semantics of the (probabilistic) temporal logic is encoded directly as
a Probabilistic Logic Program.

Note that probabilistic temporal logics use standard temporal
constructs to specify the behavior to be observed;

And simply query the probability of specified behaviors

Hence it is not surprising that the encoding of a probabilistic model
checker is very similar to the non-probabilistic case.

Autumn School ’16 Verification and PLP, Part 2 16 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

GPL Model Checker

Fuzzy (Path) Formulae

1 % State formulae
2 pmodels(S, sf(SF), H) :-

3 smodels(S, SF).

4

5 % Logical Connectives
6 pmodels(S, and(F1,F2), H) :-

7 pmodels(S, F1, H),

8 pmodels(S, F2, H).

9 pmodels(S, or(F1,F2), H) :-

10 pmodels(S, F1, H);

11 pmodels(S, F2, H).

12

13 % Diamond Modality
14 pmodels(S, diam(A, F), H) :-

15 action(S, A, SW),

16 msw(SW, H, T),

17 pmodels(T, F, [T,SW|H]).

RPLTSs semantics is a distribution of
computation trees.

Each distinct history of actions taken
determines a root-to-leaf path in a
tree.

Each distinct history results in a
distinct instance of random variables
(for choosing the next destination).

This is reflected in the treatment of
instance variables in the “diamond”
clause.

Autumn School ’16 Verification and PLP, Part 2 17 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

GPL Model Checker

Boxes and Fixed Points
18 % Box formulae
19 pmodels(S, box(A, F), H) :-

20 findall(SW, action(S,A,SW), L),

21 all_pmodels(L, S, F, H).

22

23 % Least fixed point formulae
24 pmodels(S, form(X), H) :-

25 lfp(X, F), pmodels(S, F, H).

26

27 % Greatest fixed point formulae
28 pmodels(S, form(X), H) :-

29 gfp(X, F), negate(F, NF),

30 tnot pmodels(S, NF, H).

31

32 all_pmodels([], _, _, _H).

33 all_pmodels([SW|Rest], S, F, H) :-

34 msw(SW, H, T),

35 pmodels(T,F,[T,SW|H]),

36 all_pmodels(Rest, S, F, H).

“Box” modality universally
quantifies over all possible
actions with a given label.

LFP and GFP formulae
treated the same was as for
the non-probabilistic case.

Model checker for state
formulae are straightforward
and omitted.

Autumn School ’16 Verification and PLP, Part 2 18 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

Performance Impact of PLP

6 processes:

 0.01

 0.1

 1

 10

 100

 2 3 4 5

C
P

U
 T

im
e
 i
n
 s

e
c
o
n
d
s

No. of slots

Prism MC

PIP-full

Time performance is compared with that
of the Prism Model Checker.

System specified using Prism’s modeling
language (Reactive Modues, RM).

Example shown:

System: Synchronous Leader Election
protocol
Property: “eventually a leader is
elected” (reachability).

Model checking times are within a factor
of 3 (note log scale).

Autumn School ’16 Verification and PLP, Part 2 19 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

Reachability in RMCs: I

en ex
1

b
1

b : A
1

A

b
2

b : A

.5

.5

“Call” to A enters at en.

With 0.5 probability, we immediately return (leave at ex1)

With 0.5 probability, we call A recursively, twice.

What is the probability that some call to A will reach ex1?

Autumn School ’16 Verification and PLP, Part 2 20 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

Reachability in RMCs: II

en ex
1

b
1

b : A
1

A

b
2

b : A

.5

.5

Specialized techniques have been developed to answer reachability
and termination questions.

These techniques generate and solve systems of monotone polynomial
(possibly non-linear) equations.

Autumn School ’16 Verification and PLP, Part 2 21 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

Reachability in RMCs as GPL Model Checking

en ex
1

b
1

b : A
1

A

b
2

b : A

.5

.5

Construct an RPLTS from RMC by replacing calls with c , e, and r
transitions.

Construct a GPL formula to match calls to returns:
X1: eventually exit ex1 is reached:

X1 =µ 〈e1〉tt ∨ 〈p〉X1

∨ (〈c〉X1 ∧ 〈r1〉X1)

Autumn School ’16 Verification and PLP, Part 2 22 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

Reachability in RMCs as GPL Model Checking

en ex
1

b
1

b : A
1

A

b
2

b : A

en ex
1

b
1

b
1

b
2

b

.5

.5 .5

.5

Construct an RPLTS from RMC by replacing calls with c , e, and r
transitions.

Construct a GPL formula to match calls to returns:
X1: eventually exit ex1 is reached:

X1 =µ 〈e1〉tt ∨ 〈p〉X1

∨ (〈c〉X1 ∧ 〈r1〉X1)

Autumn School ’16 Verification and PLP, Part 2 22 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

Reachability in RMCs as GPL Model Checking

en ex
1

b
1

b : A
1

A

b
2

b : A

en ex
1

b
1

b
1

b
2

b
c

c r1 r1
e1

.5

.5 .5

.5

Construct an RPLTS from RMC by replacing calls with c , e, and r
transitions.
Construct a GPL formula to match calls to returns:
X1: eventually exit ex1 is reached:

X1 =µ 〈e1〉tt ∨ 〈p〉X1

∨ (〈c〉X1 ∧ 〈r1〉X1)

Autumn School ’16 Verification and PLP, Part 2 22 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

RMCs and GPL

Given an RMC, we uniquely number each exit state.

Consider an RMC with n exits.

The property “Exit ex i is eventually reached when a recursive
procedure is entered” is given by GPL formula:

Xi =µ 〈e i 〉tt ∨ 〈p〉Xi

∨ (〈c〉X1 ∧ 〈r1〉Xi)
∨ (〈c〉X2 ∧ 〈r2〉Xi)
...
∨ (〈c〉Xn ∧ 〈rn〉Xi)

Autumn School ’16 Verification and PLP, Part 2 23 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

Markov Decision Processes (MDPs)

MDP looks very similar to an RPLTS: actions on states that have a
distribution of destination states.

Semantics is different in two ways:

States have “rewards”, and induce rewards on paths.
Schedulers dictate actions taken at each state.

Interesting problem: find an optimal scheduler that maximizes the
expected reward.

Autumn School ’16 Verification and PLP, Part 2 24 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

Committed Choice

A scheduler commits an MDP to take a specific action at some point
in its run.

Analogous to msw, we introduce nd(X, I, V) to choose from a set
and commit to that choice.

X is a discrete-valued choice process
V is a value generated by the choice process
I is the instance number.

Example: nd(s2, 0, X) with values(s2, [b,c]) will X to b in one
set of worlds, and to c in another.

Distribution semantics is naturally extended: the meaning of a
program is a distribution of sets of models.

Autumn School ’16 Verification and PLP, Part 2 25 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

Committed Choice (contd.)

q(Y) :- nd(f, 0, X),

msw(X, 0, Y).

values(f, [a,b]).

values(a, [t,f]).

values(b, [t,f]).

set_sw(a, [0.3, 0.7])

set_sw(b, [0.6, 0.4])

?- prob(q(t), P).

P = 0.3

;

P = 0.6

Probability of an answer is
computed separately for each
distinct set of committed choices.

For recursive programs (MDPs),
each set of committed choices will
yield a set of linear equations,
whose least solution will be the
corresponding probability.

Expected rewards can be
computed analogously.

We can find optimal probabilities
(and, similarly, optimal expected
reward) by pushing a max

operation into the equations
themselves.

Autumn School ’16 Verification and PLP, Part 2 26 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

Model Checking as Query Evaluation

Multi-Agent Systems

Parameterized Systems

Mobile Ad-Hoc Networks

Model Checkers
Infinite-State Systems

π-Calculus

Model checkers were built from high-level specifications of the
semantics of non-probabilistic temporal logics

Used the termination and sharing properties of tabling-based query
evaluation.

Model checkers for probabilistic systems build on these results.

Used a temporal probabilistic inference algorithm

Autumn School ’16 Verification and PLP, Part 2 27 / 27

Probabilistic Systems Probabilistic Temporal Logics Model Checkers as PLP

Model Checking as Query Evaluation

Multi-Agent Systems

Parameterized Systems

Mobile Ad-Hoc Networks

Model Checkers
Infinite-State Systems

π-Calculus
Probabilistic Systems

Model checkers were built from high-level specifications of the
semantics of non-probabilistic temporal logics

Used the termination and sharing properties of tabling-based query
evaluation.

Model checkers for probabilistic systems build on these results.

Used a temporal probabilistic inference algorithm

Autumn School ’16 Verification and PLP, Part 2 27 / 27

	Probabilistic Systems
	Probabilistic Temporal Logics
	Model Checkers as PLP

