bilistic Temporal Logics

Verification and Probabilistic Logic Programming

C. R. Ramakrishnan, Andrey Gorlin

Stony Brook University

ICLP 2016 Autumn School

Autumn School '16 Verification and PLP, Part 2 1/27

Probabilistic Systems

@®00000

c Temporal Lo

System Description:

Autumn School '16

Discrete-Time Markov Chains (DTMCs)

@ Probabilistic automata where transitions out
of a state are governed by a discrete
distribution.

@ Sets of atomic propositions may be associated
with individual states.

@ Next-state distribution depends only on the
current state and not on the past (given the
current state).

@ A variety of process languages are “compiled”
into DTMCs.

Verification and PLP, Part 2

Probabilistic Systems

Oe0000

c Temporal Lo

System Description: |l

Autumn School '16

Continuous-Time Markov Chains (CTMCs)

@ Probabilistic automata where transitions out
of a state have associated rates.

@ The rates govern the time at which a
transition “fires” (distributed exponentially).

@ An execution is extended by taking first
transition to fire from current state.

@ Analysis of CTMCs is often done by analyzing
an associated DTMC.

@ We will focus on discrete-time probabilistic
systems in this lecture.

Verification and PLP, Part 2

Probabilistic Systems

00@000

c Temporal Lo

System Description: |l

A
?\06 08 -7
o.4l>< 02
=ogho=

Autumn School '16

Markov Decision Processes (MDPs)

@ Discrete-time probabilistic automata where
each state has a set of uniquely labeled
transitions.

@ Each transition specifies a distribution of
destination states (in general, not just a single
state).

@ Combines non-deterministic choice of
transitions with probabilistic choice of
destination based on a chosen transition.

@ Used widely to model behaviors of agents.

Verification and PLP, Part 2

Probabilistic Systems
00000

Recursive Markov Chains (RMCs)

A @ Models of Probabilistic Programs:
Extension of DTMCs with “Calls” to
model non-tail-recursive procedures.

@ Each RMC has a distinguished "“Entry”
state (which is reached when that RMC is
“called”).

@ Each RMC may have one or more “Exits",
which can be used to model return values.

Autumn School '16 Verification and PLP, Part 2 5/27

Probabilistic Systems

0000e0

bilistic Temporal Logics

Reactive Probabilistic Labeled Transition Systems (RPLTS)

Autumn School '16

@ Automata has finite number of
states.

@ Each state offers a finite number
of labeled actions.

o Each action has a distribution of
states: taking an action chooses a
destination state according to the
given distribution.

@ Actions are triggered by an
external agent; the system reacts
to actions.

[Cleaveland, lyer & Narasimha, TCS'05]

Verification and PLP, Part 2

6/

Probabilistic Systems

[eJelelele]]

bilistic Temporal |

RPLTS vs MDPs

Autumn School '16

@ RPLTS and MDPs are structurally
identical but are interpreted
differently.

@ RPLTS semantics is given in terms
of a distribution over computation
trees, where

e Probabilistic choices are first
resolved in order to construct
computation trees, and

e The trees, in turn, capture the
available non-deterministic
choices.

Verification and PLP, Part 2

Probabilistic Temporal Logics

@000

Properties of Probabilistic Systems

@ Reachability: Find the probability that a run of the system
eventually reaches a given state.
Related problem: termination.

o Probabilistic Temporal Logics: Formulae in such logics express

complex temporal conditions on the behaviors of a system.
Behaviors may be

e runs: linear-time logics
e trees: branching-time logics

The problem is to find the probability of behaviors that satisfy the
temporal conditions.

@ Optimization: For MDPs and other systems with non-determinism,
find the min. or max. probability of a specified behavior.

Autumn School '16 Verification and PLP, Part 2 8 /27

Probabilistic Temporal Logics
0®00

Probabilistic Computation Tree Logic (PCTL)

@ PCTL is a logic for specifying properties of DTMCs.

Propositions, logical connectives
| Pr(¢) > b State formulae

» = Xe | o1 U Path formulae

@ State formulas are non-probabilistic; path formulas have associated
probabilities.

@ Used as the property specification language by many systems,
including the Prism Model Checker.

e Example: Pr(p U q) > 0.75
Is the probability of a run where p holds until g more than 0.757

Autumn School '16 Verification and PLP, Part 2

9 /27

Probabilistic Temporal Logics

lele] lo}

Generalized Probabilistic Logic (GPL)

@ An expressive, mu-calculus-based, logic for branching-time
probabilistic processes.

@ Semantics of GPL is given in terms of computation trees of RPLTSs.
@ This logic is strictly more expressive than PCTL*.

@ Reachability and termination in RMCs can be reduced to GPL model
checking over RPLTSs.

@ We can construct a model checker for GPL by directly encoding its
semantics as a probabilistic logic program.

Autumn School '16 Verification and PLP, Part 2 10 / 27

Probabilistic Temporal Logics

ooo0e

GPL

@ Usual mu-calculus-like modalities and fixed points (called “state
formulae™) in GPL.

State formulae, ¢, have a boolean interpretation:

p=0¢Veo |---| prBy | pr=By | .- propositions. ..

o Fuzzy formulae ¢, analogous to PCTL path formulae, have
probabilistic interpretation:

=9V [YAy [(v | [aly | ¢ | X

Alternation-free fixed point equations of the form X =, 1) and
X =, .

Autumn School '16 Verification and PLP, Part 2 11 /27

bilistic Temporal Logics Model Checkers as PLP

900000000000 0000

System Definitions as PLP

@ Recall encoding DTMCs in PRISM:
% DTMC Transition Relation
trans(S, I, T) :- msw(t(S), I, T).

where switch t (s) encodes the transition distribution from state s.
@ For MDPs and RPLTSs, each action gives a distribution. This is
encoded as facts of the following form:

% MDP/RPLTS Action Definitions
action(S, A, SW)
where “S" is the source state, “A” is a transition label, and SW is a

switch whose distribution models the action’s distribution.
e MDP/RPLTS transitions are defined by:

% DTMC Transition Relation
trans(S, A, I, T) :- action(S, A, SW), msw(SW, I, T).

Autumn School '16 Verification and PLP, Part 2 12 /27

ilistic Temporal Logics Model Checkers as PLP

O@®00000000000000

Encoding the PCTL Model Checker

State Formulae

% Propositions
models (S, prop(P)) :- holds(S, P).

% Logical connectives
models(S, neg(F)) :- tnot models(S, F).
models(S, and(F1, F2)) :- models(S, F1), models(S, F2).

% Path Quantifiers

models(S, pr(F, gt, B)) :-
prob(pmodels(S, F), P),

11 P > B.

12 models(S, pr(F, geq, B)) :-

13 prob(pmodels(S, F), P),

14 P >= B.

© © N o U A~ W N R

Lol
o

N

Autumn School '16 Verification and PLP, Part 2 13 /27

Model Checkers as PLP

00®0000000000000

Encoding the PCTL Model Checker

Path Formulae

@ Note that X and U operators will access the transition relation.
@ Outcomes of a transition at different time steps need to be distinguished.

15 % Add extra temporal argument

6 pmodels(S, F) :- pmodels(S, F, _).

17

18 % Next

19 pmodels(S, next(F), H) :- trans(S, H, T), models(T, F).

-

Autumn School '16 Verification and PLP, Part 2 14 /27

ilistic Temporal Logics Model Checkers as PLP

000@000000000000

Encoding the PCTL Model Checker

Path Formulae (contd.)

o % Until (base case):

1 pmodels(S, until(F1, F2), H) :-

2 pmodels(S, or(F2, and(F1, next(until(F1,F2))))).
23

+ % Until (unrolled, recursive case)

5 pmodels(S, until(F1, F2), H) :-

6 models(S, F1), trans(S, H, T),

7 prmodels(T, until(F1, F2), next(H)).
28

o % Note the temporal argument in pmodels/3:

o temporal (pmodels/3-3).

N Y

NI

W N

Autumn School '16 Verification and PLP, Part 2 15 / 27

ilistic Temporal Logics Model Checkers as PLP

0O000@00000000000

Model Checking in PLP

@ Semantics of the (probabilistic) temporal logic is encoded directly as
a Probabilistic Logic Program.

@ Note that probabilistic temporal logics use standard temporal
constructs to specify the behavior to be observed;

e And simply query the probability of specified behaviors

@ Hence it is not surprising that the encoding of a probabilistic model
checker is very similar to the non-probabilistic case.

Autumn School '16 Verification and PLP, Part 2 16 / 27

c Systems Probabilistic Temporal L

GPL Model Checker

Fuzzy (Path) Formulae

1 % State formulae

> pmodels(S, sf(SF), H) :-

3 smodels (S, SF).

4

s % Logical Connectives

6 pmodels(S, and(F1,F2), H) :-
7 pmodels(S, F1, H),

8 pmodels(S, F2, H).

9 pmodels(S, or(F1,F2), H) :-

10 pmodels(S, F1, H);

1 pmodels(S, F2, H).

12

13 % Diamond Modality

4 pmodels(S, diam(A, F), H) :-
15 action(S, A, SW),

16 msw(SW, H, T),

17 pmodels(T, F, [T,SWIH]).

=

Autumn School '16 Verification and PLP, Part 2 17/

Model Checkers as PLP

00000@0000000000

RPLTSs semantics is a distribution of
computation trees.

Each distinct history of actions taken
determines a root-to-leaf path in a
tree.

Each distinct history results in a
distinct instance of random variables
(for choosing the next destination).

This is reflected in the treatment of
instance variables in the “diamond”
clause.

c Systems Probabilistic Temporal L s Model Checkers as PLP

000000800000 0000

GPL Model Checker

Boxes and Fixed Points
18 % Box formulae

19 pmodels(S, box(A, F), H) :-
20 findall(SW, action(S,A,SW), L),
21 all_pmodels(L, S, F, H).
2 @ “Box" modality universally
23 % Least fixed point formulae quantifies over all possible

2 pmodels (S, form(X), H) :- actions with a given label.
25 1fp(X, F), pmodels(S, F, H).

26 @ LFP and GFP formulae

27 % Greatest fixed point formulae treated the same was as for
28 pmodels(S, form(X), H) :-

29 gfp(X, F), negate(F, NF),
30 tnot pmodels(S, NF, H). @ Model checker for state

3 formulae are straightforward
32 all_pmodels([], _, _, _H). and omitted.

33 all_pmodels([SW|Rest], S, F, H) :-
34 msw(SW, H, T),

35 pmodels(T,F, [T,SW|H]),

36 all_pmodels(Rest, S, F, H).

Autumn School '16 Verification and PLP, Part 2

the non-probabilistic case.

c Temporal Lo Model Checkers as PLP

0000000@00000000

Performance Impact of PLP

@ Time performance is compared with that
of the Prism Model Checker.
6 processes:

10¢

, @ System specified using Prism’s modeling
R language (Reactive Modues, RM).

@ Example shown:

e System: Synchronous Leader Election

CPU Time in seconds

o1 protocol
e Property: “eventually a leader is
s e z e elected” (reachability).

No. of slots

@ Model checking times are within a factor
of 3 (note log scale).

Autumn School '16 Verification and PLP, Part 2 19 / 27

ilistic Temporal Logics Model Checkers as PLP

00000000 e0000000

Reachability in RMCs: |

o “Call” to A enters at en.

e With 0.5 probability, we immediately return (leave at exj)
@ With 0.5 probability, we call A recursively, twice.

@ What is the probability that some call to A will reach ex;?

Autumn School '16 Verification and PLP, Part 2 20 / 27

bilistic Temporal L s Model Checkers as PLP

00000000 0e000000

Reachability in RMCs: |l

@ Specialized techniques have been developed to answer reachability
and termination questions.

@ These techniques generate and solve systems of monotone polynomial
(possibly non-linear) equations.

Autumn School '16 Verification and PLP, Part 2

bilistic Temporal Logics Model Checkers as PLP

0000000000 e00000

Reachability in RMCs as GPL Model Checking

@ Construct an RPLTS from RMC by replacing calls with ¢, e, and r
transitions.

Autumn School '16 Verification and PLP, Part 2 22 /27

ilistic Temporal Logics Model Checkers as PLP

0000000000 e00000

Reachability in RMCs as GPL Model Checking

@ Construct an RPLTS from RMC by replacing calls with ¢, e, and r
transitions.

Autumn School '16 Verification and PLP, Part 2 22 /27

bilistic Temporal Logics Model Checkers as PLP

0000000000 e00000

Reachability in RMCs as GPL Model Checking

@ Construct an RPLTS from RMC by replacing calls with ¢, e, and r
transitions.

@ Construct a GPL formula to match calls to returns:

@ Xi: eventually exit ex; is reached:

X1 =u (en)tt vV (p)Xi
V (<C>X1 A (r1>X1)
Verification and PLP, Part 2 22 /27

listic Temporal Logics Model Checkers as PLP

0000000000 0e0000

RMCs and GPL

@ Given an RMC, we uniquely number each exit state.
@ Consider an RMC with n exits.

@ The property “Exit ex; is eventually reached when a recursive
procedure is entered” is given by GPL formula:

Xi =u (e)tt V. (p)X;

Autumn School '16 Verification and PLP, Part 2 23 /27

bilistic Temporal Logics Model Checkers as PLP

000000000000 e000

Markov Decision Processes (MDPs)

@ MDP looks very similar to an RPLTS: actions on states that have a
distribution of destination states.
@ Semantics is different in two ways:
e States have “rewards’, and induce rewards on paths.
o Schedulers dictate actions taken at each state.
@ Interesting problem: find an optimal scheduler that maximizes the
expected reward.

Autumn School '16 Verification and PLP, Part 2

Model Checkers as PLP

0000000000000 e00

Committed Choice

@ A scheduler commits an MDP to take a specific action at some point
in its run.
@ Analogous to msw, we introduce nd(X, I, V) to choose from a set
and commit to that choice.
e X is a discrete-valued choice process
e V is a value generated by the choice process
o I is the instance number.
@ Example: nd(sy, 0, X) with values(sy, [b,c]) will X to b in one
set of worlds, and to c in another.
@ Distribution semantics is naturally extended: the meaning of a
program is a distribution of sets of models.

Autumn School '16 Verification and PLP, Part 2

ilistic Temporal Logics

Model Checkers as PLP

0000000000000 0e0

Committed Choice (contd.)

q{Y) :- nd(f, 0, X),
msw(X, 0, Y).
values(f, [a,b]).
values(a, [t,f]).
values(b, [t,f]).
set_sw(a, [0.3, 0.7])
set_sw(b, [0.6, 0.4])

?- prob(q(t), P).

v}
I

0.3

jav}
]

0.6

Probability of an answer is
computed separately for each
distinct set of committed choices.

For recursive programs (MDPs),
each set of committed choices will
yield a set of linear equations,
whose least solution will be the
corresponding probability.

Expected rewards can be
computed analogously.

We can find optimal probabilities
(and, similarly, optimal expected
reward) by pushing a max
operation into the equations
themselves.

Autumn School '16 Verification and PLP, Part 2

26 / 27

bilistic Temporal Logics Model Checkers as PLP

000000000000 000e

Model Checking as Query Evaluation

Mobile Ad-Hoc Networks
Parameterized Systems

Multi-Agent Systems
Model Checkers

Infinite-State Systems
m-Calculus

@ Model checkers were built from high-level specifications of the
semantics of non-probabilistic temporal logics

o Used the termination and sharing properties of tabling-based query
evaluation.

Autumn School '16 Verification and PLP, Part 2 27 / 27

bilistic Temporal Logics Model Checkers as PLP

000000000000 000e

Model Checking as Query Evaluation

Mobile Ad-Hoc Networks
Parameterized Systems

Multi-Agent Systems
Model Checkers

Infinite-State Systems

m-Calculus
Probabilistic Systems

@ Model checkers were built from high-level specifications of the
semantics of non-probabilistic temporal logics

o Used the termination and sharing properties of tabling-based query
evaluation.

@ Model checkers for probabilistic systems build on these results.
o Used a temporal probabilistic inference algorithm

Autumn School '16 Verification and PLP, Part 2 27 / 27

	Probabilistic Systems
	Probabilistic Temporal Logics
	Model Checkers as PLP

