
Constraint	(Logic)	
Programming

Roman Barták
Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic

bartak@ktiml.mff.cuni.cz

Combinatorial	puzzle, whose
goal	is	to	enter	digits	1-9	in
cells	of	9´9	table	in	such	a	way,
that	no	digit	appears	twice
or	more	in	every	row,	column,
and	3´3	sub-grid.

Solving	Sudoku
Use	information	that	each	digit	
appears	exactly	once
in	each	row,	column	and	sub-grid.	

Sudoku

Solving	Sudoku

If	neither	rows	and	columns	
provide	enough	information,	we	
can	note	allowed	digits	in	each	
cell.

The	position	of	a	digit	can	be	
inferred	from	positions	of	other	
digits	and	restrictions	of	
Sudoku	that	each	digit	appears	
one	in	a	column	(row,	sub-grid)

Sudoku	in	general

We	can	see	every
cell	as	a	variable
with	possible	values
from	domain {1,…,9}.

There	is	a	binary	inequality	constraint
between	all	pairs	of	variables	in	every	
row,	column,	and	sub-grid.

Such	formulation	of	the	problem	is	called
a	constraint	satisfaction	problem.

Tutorial	outline

Constraint	satisfaction	in	general
– search	techniques	(backtracking)
– consistency	techniques	(arc	consistency)
– global	constraints	(all-different)
– combining search	and	consistency

• value	and	variable	ordering
• branching	schemes

– optimization	problems

Constraints	in	Logic	Programming
– from	unification	to	constraints
– constraints	in	Picat
– modeling	examples

Constraint	Satisfaction	Problem

Constraint	satisfaction	problem	consists	of:
– a finite	set	of	variables

• describe	some	features	of	the	world	state	that	we	are	looking	for,	
for	example	positions	of	queens	at	a	chessboard

– domains	– finite	sets	of	values	for	each	variable
• describe	“options”	that	are	available,	for	example	the	rows	for	
queens

• sometimes,	there	is	a	single	common	“superdomain”	and	domains	
for	particular	variables	are	defined	via	unary	constraints

– a finite	set	of	constraints
• a constraint	is	a	relation over	a	subset	of	variables
for	example	rowA ¹ rowB

• a constraint	can	be	defined	in	extension	(a	set	of	tuples	satisfying	
the	constraint)	or	using	a	formula (see	above)

A	solution	to	a	CSP

A feasible solution of a constraint satisfaction problem is
a complete consistent assignment of values to variables.
– complete = each variable has assigned a value
– consistent = all constraints are satisfied

Sometimes we may look for all the feasible solutions or for
the number of feasible solutions.

An optimal solution of a constraint satisfaction problem
is a feasible solution that minimizes/maximizes a value
of some objective function.
– objective function = a function mapping feasible solutions to

integers

The	Core	Topics

Problem Modelling

How to describe a problem as a constraint satisfaction
problem?

Solving Techniques

How to find values for the variables satisfying all the
constraints?

Solving	CSPs

N-queens:	allocate	N	queens	to	a	chess	board	of	size	N´N	in	a	such	way	
that	no	two	queens	attack	each	other

the	modelling	decision:	each	queen	is	located	in	its	own	column

variables:	N	variables	r(i)	with	the	domain	{1,…,N}

constraints:	no	two	queens	attack	each	other
"i¹j r(i)¹r(j)	� |i-j|	¹ |r(i)-r(j)|	

´
´
´

´

´ ´ ´
´
´
´

´

´
´

´ ´ ´
´
´
´
´ ´

´

´ ´ ´
´
´

´ ´

Backtracking

Probably the most widely used systematic search algorithm that verifies

the constraints as soon as possible.
– upon failure (any constraint is violated) the algorithm goes back to

the last instantiated variable and tries a different value for it
– depth-first search

The core principle of applying backtracking to solve a CSP:
1. assign values to variables one by one
2. after each assignment verify satisfaction of constraints with known

values of all constrained variables

Open questions (to be answered later):
• What is the order of variables being instantiated?
• What is the order of values tried?

Backtracking explores partial consistent

assignments until it finds a complete

(consistent) assignment.

procedure BT(X:variables, V:assignment, C:constraints)
if X={} then return V
x ¬ select a not-yet assigned variable from X
for each value h from the domain of x do

if constraints C are consistent with V È {x/h} then

R ¬ BT(X – {x}, V È {x/h}, C)
if R ¹ fail then return R

end for

return fail
end BT

Call as BT(X, {}, C)

Chronological	Backtracking	(a	recursive	version)

Note:

If it is possible to perform the test stage for a partially generated solution
candidate then BT is always better than GT, as BT does not explore all
complete solution candidates.

Look Back

Look Ahead

Weaknesses	of	Backtracking

thrashing
– throws	away	the	reason	of	the	conflict
Example: A,B,C,D,E::	1..10,	 A>E

• BT	tries	all	the	assignments	for	B,C,D	before	finding	that	A¹1
Solution: backjumping (jump	to	the	source	of	the	failure)

redundant	work
– unnecessary	constraint	checks	are	repeated
Example: A,B,C,D,E::	1..10,	B+8<D,	C=5*E

• when	labelling	C,E	the	values	1,..,9	are	repeatedly	checked	for	D

Solution: backmarking,	backchecking (remember	(no-)good	assignments)

late	detection	of	the	conflict
– constraint	violation	is	discovered	only	when	the	values	are	known
Example: A,B,C,D,E::1..10,	A=3*E

• the	fact	that	A>2	is	discovered	when	labelling	E

Solution: forward	checking	(forward	check	of	constraints)

Example:
A	in	[3,..,7],	B	in	[1,..,5],	A<B

Constraint	can	be	used	to	prune	the	domains	actively
using	a	dedicated	filtering	algorithm!

3..7 1..5
A<B

Not arc-consistent

A B 3..4 1..5
A<B

(A,B) is consistent

A B 3..4 4..5
A<B

(A,B) and (B,A) are consistent
A B

Some	definitions:
The	arc	(Vi,Vj)	is	arc	consistent	iff for	each	value	x	from	the	
domain	Di	there	exists	a	value	y	in	the	domain	Dj such	that	the	
assignment	Vi	=x	a	Vj =	y	satisfies	all	the	binary	constraints	on	
Vi,	Vj.

CSP is	arc	consistent	iff every	arc	(Vi,Vj)	is	arc	consistent	(in	
both	directions).

Constraint	consistency

Algorithm	for	arc	revisions

How	to	make	(Vi,Vj)	arc	consistent?
Delete	all	the	values	x from	the	domain	Di that	are	
inconsistent	with	all	the	values	in	Dj (there	is	no	value	y in	Dj
such	that	the	valuation	Vi =	x,	Vj =	y		satisfies	all	the	binary	
constrains	on	Vi a	Vj).

Algorithm	of	arc	revision

procedure REVISE((i,j))
DELETED ¬ false
for each X in Di do

if there is no such Y in Dj such that (X,Y) is consistent, i.e.,
(X,Y) satisfies all the constraints on Vi, Vj then

delete X from Di
DELETED ¬ true

end if
end for
return DELETED

end REVISE

The procedure also
reports the deletion
of some value.

Constraint	propagation
How	to	establish	arc	consistency	among	the	constraints?

Example:	X	in	[1,..,6],	Y	in	[1,..,6],	Z	in	[1,..,6],	X<Y,	Z<X-2

X in [1,..,6]
Y in [1,..,6]
Z in [1,..,6]

X in [1,..,5]
Y in [2,..,6]
Z in [1,..,6]

X<Y
X in [4,5]
Y in [2,..,6]
Z in [1,2]

Z<X-2
X in [4,5]
Y in [5,6]
Z in [1,2]

X<Y

Make	all	the	constraints	consistent	until	any	domain	is	changed	(AC-1)

Why	we	should	revise	the	constraint	X<Y	if	domain	of	Z	is	changed?

procedure AC-3(G)
Q ¬ {(i,j) | (i,j)Îarcs(G), i¹j} % queue of arcs for revision
while Q non empty do

select and delete (k,m) from Q
if REVISE((k,m)) then

Q ¬ Q È {(i,k) | (i,k)Îarcs(G), i¹k, i¹m}
end if

end while
end AC-3

Non-binary	constraints

So far we assumed mainly binary constraints.
We can use binary constraints, because every CSP can be

converted to a binary CSP!
Is this really done in practice?

– in many applications, non-binary constraints are naturally
used, for example, a+b+c £ 5

– for such constraints we can do some local inference /
propagation
for example, if we know that a,b ³ 2, we can deduce that
c £ 1

– within a single constraint, we can restrict the domains of
variables to the values satisfying the constraint
Ä generalized arc consistency

– The value x of variable V is generalized arc consistent with
respect to constraint P if and only if there exist values for the other
variables in P such that together with x they satisfy the constraint P

Example: A+B£C, A in {1,2,3}, B in {1,2,3}, C in {1,2,3}
Value 1 for C is not GAC (it has no support), 2 and 3 are GAC.

– The variable V is generalized arc consistent with respect to
constraint P, if and only if all values from the current domain of V are
GAC with respect to P.

Example: A+B£C, A in {1,2,3}, B in {1,2,3}, C in {2,3}
C is GAC, A and B are not GAC

– The constraint C is generalized arc consistent, if and only if all
variables in C are GAC.

Example: for A in {1,2}, B in {1,2}, C in {2,3} A+B£C is GAC

– The constraint satisfaction problem P is generalized arc
consistent, if and only if all the constraints in P are GAC.

Generalized	arc	consistency

We will modify AC-3 for non-binary constraints.

– We can see a constraint as a set of propagation
methods – each method makes one variable GAC:
A + B = C: A + B ® C, C – A ® B, C – B ® A

– By executing all the methods we make the constraint
GAC.

– We repeat revisions until any domain changes.

procedure GAC-3(G)
Q ¬ {Xs ®Y | Xs ®Y is a method for some constraint in G}
while Q non empty do

select and delete (As®B) from Q
if REVISE(As®B) then

if DB=Æ then stop with fail
Q ¬ Q È {Xs ®Y | Xs ®Y is a method s.t. BÎXs}

end if

end while

end GAC-3

How	to	make	a	CSP	GAC?

Can we achieve GAC faster than a general
GAC algorithm?

– for example revision of A < B can be done much
faster via bounds consistency.

Can we write a filtering algorithm for a
constraint whose arity varies?

– for example all_different constraint

We can exploit semantics of the constraint
for efficient filtering algorithms that can work
with any number of variables.

F global constraints E

Global	constraints

Programování s omezujícími

podmínkami, Roman Barták

Logic-based	puzzle, whose
goal	is	to	enter	digits	1-9	in
cells	of	9´9	table	in	such	a	way,
that	no	digit	appears	twice
or	more	in	every	row,	column,
and	3´3	sub-grid.

How to model such a problem?

– variables describe the cells

– inequality constraint connect each pair of
variables in each row, column, and sub-grid

– Such constraints do not propagate well!
• The constraint network is AC, but
• we can still remove some values.

a b

a b
a b c

¹

¹

¹

X1

X2

X3

XX

Recall	Sudoku

This constraint models a complete set of binary inequalities.
all_different({X1,…, Xk}) = {(d1,…, dk) | "i diÎDi & "i¹j di ¹ dj}
Domain filtering is based on matching in bipartite graphs

(nodes = variables+values, edges = description of domains)

all-different

a

b

c

X1

X2

X3

Initialization:
1) find a maximum matching
2) remove all edges that do not belong

to any maximum matching

Incremental propagation (X1¹a):
1) remove “deleted” edges
2) find a new maximum matching
3) remove all edges that do not belong

to any maximum matching

´´

X1

X2

X3

a

b

c

´

´

Régin (AAAI 1994)

global cardinality

A generalization of all-different
– the number of occurrences of a value in a set of variables is

restricted by minimal and maximal numbers of occurrences
Efficient filtering is based on network flows.

X1

X2

X3

X4

a

b

c

source sink

1-2

2-2

0-2

1. make a value graph
2. add sink and source
3. set upper and lower bounds

and edge capacities (0-1 and
value occurrences)

Min/Max
occurrences

Edges
describe
domains

Régin (AAAI 1996)

A maximal flow corresponds to a feasible assignment of variables!
We will find edges with zero flow in each maximal flow and the we will
remove the corresponding edges.

How	to	solve	constraint	satisfaction	problems?

So	far	we	have	two	methods:
– search

• complete	(finds	a	solution	or	proves	its	non-existence)
• too	slow	(exponential)

– explores	“visibly”	wrong	valuations

– consistency	techniques
• usually	incomplete	(inconsistent	values	stay	in	domains)
• pretty	fast	(polynomial)

Share	advantages	of	both	approaches	- combine them!
– label	the	variables	step	by	step	(backtracking)
– maintain	consistency	after	assigning	a	value

Do	not	forget	about traditional	solving	techniques!
– linear	equality	solvers,	simplex	…
– such	techniques	can	be	integrated	to	global	constraints!

A	core	constraint	satisfaction	method:
– label	(instantiate)	the	variables	one	by	one

• the	variables	are	ordered	and	instantiated	in	that	order

– verify	(maintain)	consistency	after	each	assignment

Look-ahead	technique	(MAC	– Maintaining	Arc	Consistency)

procedure labeling(V, D, C)
if all variables from V are instantiated then return V
select not-yet instantiated variable x from V
for each value v from Dx do

(TestOK, D’) ¬ consistent(V, D, CÈ{x=v})
if TestOK=true then R ¬ labeling(V, D’, C)

if R ¹ fail then return R
end for

return fail
end labeling

Maintaining	consistency	during	search

Is	a	CSP	solved	by	enumeration?

Backtracking (enumeration)	is	not	
very	good

• 19	attempts

Forward	checking is	better
3	attempts

And	the	winner	is	Look	Ahead
2	attempts

Variable	ordering

Variable	ordering	in	labelling	influences	significantly	efficiency	of	
constraint	solvers	(e.g.	in	a	tree-structured	CSP).

Which	variable	ordering	should	be	chosen	in	general?
FAIL	FIRST	principle

„select	the	variable	whose	instantiation	will	lead	to	a	failure“
it	is	better	to	tackle	failures	earlier,	they	can	be	become	even	harder
– prefer	the	variables	with	smaller	domain (dynamic	order)

• a	smaller	number	of	choices	~	lower	probability	of	success	
• the	dynamic	order	is	appropriate	only	when	new	information	appears	
during	solving	(e.g.,	in	look-ahead	algorithms)	

„solve	the	hard	cases	first,	they	may	become	even	harder	later“
– prefer	the	most	constrained	variables

• it	is	more	complicated	to	label	such	variables	(it	is	possible	to	assume	
complexity	of	satisfaction	of	the	constraints)

• this	heuristic	is	used	when	there	is	an	equal	size	of	the	domains
– prefer	the	variables	with	more	constraints	to	past	variables

• a	static	heuristic	that	is	useful	for	look-back	techniques

Value	ordering
Order	of	values	in	labelling	influence	significantly	efficiency	(if	we	

choose	the	right	value	each	time,	no	backtrack	is	necessary).
What	value	ordering	for	the	variable	should	be	chosen	in	general?
SUCCEED	FIRST	principle

„prefer	the	values	belonging	to	the	solution“
– if	no	value	is	part	of	the	solution	then	we	have	to	check	all	values
– if	there	is	a	value	from	the	solution	then	it	is	better	to	find	it	soon
Note: SUCCEED	FIRST	does	not	go	against	FAIL	FIRST	!
– prefer	the	values	with	more	supports

• this	information	can	be	found	in	AC-4
– prefer	the	value	leading	to	less	domain	reduction

• this	information	can	be	computed	using	singleton	consistency
– prefer	the	value	simplifying	the	problem

• solve	approximation	of	the	problem		(e.g.	a	tree)

Generic	heuristics	are	usually	too	complex for	computation.
It	is	better	to	use	problem-driven	heuristics	that	propose	the	value!

So far we assumed search by labelling, i.e. assignment of
values to variables.

– assign a value, propagate and backtrack in case of
failure (try other value)

• this is called enumeration

– propagation is used only after instantiating a variable

Example:

• X,Y,Z in 0,…,N-1 (N is constant)
• X=Y, X=Z, Z=(Y+1) mod N

– problem is AC, but has no solution
– enumeration will try all the values
– for n=107 runtime 45 s. (at 1.7 GHz P4)

Can we use faster labelling?

0 1 2
X

YZ

Enumeration

Enumeration resolves disjunctions in the form X=0 Ú X=1 … X=N-1

– if there is no correct value, the algorithm tries all the values
We can use propagation when we find some value is wrong!

– that value is deleted from the domain which starts propagation
that filters out other values

– we solve disjunctions in the form X=H Ú X¹H

– this is called step labelling (usually a default strategy)
– the previous example solved in 22 s. by trying and refuting value 0

for X
Why so long?

– In each AC cycle we remove just one value.
Another typical branching is bisection/domain splitting

– we solve disjunctions in the form X£H Ú X>H, where H is a value
in the middle of the domain

Other	branching	strategies

So far we looked for any solution satisfying the constraints.

Frequently, we need to find an optimal solution, where solution
quality is defined by an objective function.

Definition:

• Constraint Satisfaction Optimisation Problem (CSOP)
consists of a CSP P and an objective function f mapping
solutions of P to real numbers.

• A solution to a CSOP is a solution to P minimizing /
maximizing the value of f.

• When solving CSOPs we need methods that can provide
more than one solution.

Constrained	optimization

Objective function is encoded in a constraint

we „optimize“ a value v, where v = f(x)
• the first solution is found using no bound on v
• the next solutions must be better than the last solution

found (v < Bound)
• repeat until no feasible solution is found

Algorithm Branch & Bound

procedure BB-Min(Variables, V, Constraints)
Bound ¬ sup
NewSolution ¬ fail
repeat

Solution ¬ NewSolution
NewSolution ¬ Solve(Variables,Constraints È {V<Bound})
Bound ¬ value of V in NewSolution (if any)

until NewSolution = fail
return Solution

end BB-Min

Branch	and	bound	for	constrained	optimization

