

# Constraints in Picat (and Prolog)

**Practical Exercises** 

# **Unification?**

### Recall:

?-3=1+2. no ?-X=1+2 X=1+2; no ?-3=X+1

### What is the problem?

no

Term has no meaning (even if it consists of numbers), it is just a syntactic structure!

### We would like to have:

?-X=1+2. X=3 ?-3=X+1. X=2 ?-3=X+Y,Y=2.

X=1

?-3=X+Y,Y>=2,X>=1.

**X=1 Y=2** 

- For each variable we define its **domain.** 
  - we will be using discrete finite domains only
  - such domains can be mapped to integers
- We define **constraints/relations** between the variables.

```
[X,Y] :: 0..100, 3#=X+Y, Y#>=2, X#>=1.
```

- Recall a constraint satisfaction problem.
- We want the system to find the values for the variables in such a way that all the constraints are satisfied.

$$X=1, Y=2$$

# How does it work?

### How is constraint satisfaction realized?

- For each variable the system keeps its actual domain.
- When a constraint is added, the inconsistent values are removed from the domain.

# **Example:**

Picat is a programming language incorporating features from multiple programming paradigms.

The purpose is to bridge the gap between imperative and declarative languages.

# www.picat-lang.org

# SEND+MORE=MONEY

Assign different digits to letters such that SEND+MORE=MONEY holds and S≠0 and M≠0.

### Idea:

generate assignments with different digits and check the constraint

```
crypto better(Sol) =>
   Sol = [S,E,N,D,M,O,R,Y],
                                                      Some letters can be
  Digits 19 = 1..9,
                                                      computed from other
  Digits0_9 = 0..9,
                                                      letters and invalidity
  % D+E = 10*P1+Y
                                                      of the constraint can
  member(D, Digits0_9),
                                                      be checked before all
  member (E, Digits 0 9), E!=D,
                                                        letters are know
  \underline{Y} is (D+E) mod 10, \underline{Y}!=D, \underline{Y}!=E,
  P1 is (D+E) // 10, % carry bit
   % N+R+P1 = 10*P2+E
  member(N, Digits0_9), N!=D, N!=E, N!=Y,
R is (10+E-N-P1) mod 10, R!=D, R!=E, R!=Y, R!=N,
  P2 is (N+R+P1) // 10,
   % E+O+P2 = 10*P3+N
   O is (10+N-E-P2) mod 10, 0!=D, 0!=E, 0!=Y, 0!=N, 0!=R,
  P3 is (E+O+P2) // 10,
   % S+M+P3 = 10*M+O
  member(M, Digits1 9), M!=D, M!=E, M!=Y, M!=N, M!=R, M!=O,
   S is 9*M+O-P3,
   S>0, S<10, S!=D, S!=E, S!=Y, S!=N, S!=R, S!=O, S!=M.
```

# SEND+MORE=MONEY (CLP)

# Domain filtering can take care about computing values for letters that depend on other letters.

Note: It is also possible to use a model with carry bits.

# A typical structure of CLP programs in Picat:



### Domain constraints

# **Domain** in Picat is a set of integers

- other values must be mapped to integers
- integers are naturally ordered

Frequently, domain is an interval

- ListOfVariables :: MinVal..MaxVal
- defines variables with the initial domain {MinVal,...,MaxVal}

For each variable we can define a separate domain (it is possible to use any expression providing a list of integers)

```
- X :: Expr
- X :: [1,2,3,8,9,15]++[27,28]
```

Classical arithmetic constraints with operations +,-,\*,/, abs, min, max,... operations are built-in

It is possible to use comparison to define a constraint #=, #<, #>, #=<, #>=, #!=

What if we define a constraint before defining the domains?

 For such variables, the system assumes initially the infinite domain -MinInt..+MaxInt

## Boolean constraints

Arithmetic (reified) constraints can be connected using logical operations:

• #~ :Q negation

• :P #/\ :Q conjunction

• :P #\/ :Q disjunction

• :P #=> :Q implication

• :P #<=> :Q equivalence

P and Q could be Boolean variables (constants) or arithmetic, domain or Boolean constraints

Constraints alone frequently do not set the values to variables. We need to instantiate the variables via search.

- indomain(X)
  - assign a value to variable X (values are tried in the increasing order upon backtracking)
- solve(Vars)
  - instantiate variables in the list Vars
  - algorithm MAC maintaining arc consistency during backtracking

# Parameters of search

# solve(:Options, +Variables)

- variable ordering
  - -forward, backward, degree, constr,
    min, max, min, ff, ffc, ffd, ...
- value ordering
  - -split, reverse split
  - -down, rand
- optimization
  - -\$min(X), \$max(X)

# Which **decision variables** are needed?

- variables denoting the problem solution
- they also define the search space

# Which values can be assigned to variables?

the definition of domains influences the constraints used

# How to formalise **constraints**?

- available constraints
- auxiliary variables may be necessary



N-queens

Propose a constraint model for solving the N-queens problem (place four queens to a chessboard of size  $N \times N$  such that there is no conflict).

```
import cp.
queens(N,Queens) =>
  QR = new list(N), QR :: 1..N,
                                      % position in rows
  QC = new list(N), QC :: 1..N,
                                      % position in columns
  Queens = zip(QR,QC),
                                      % coordinates of queens
  foreach(I in 1..N, J in (I+1)..N)
      QR[I] #!= QR[J],
                                      % different rows
                                      % different columns
      QC[I] #!= QC[J],
      QC[I]-QR[I] #!= QC[J]-QR[J],
                                      % different diagonals
       QC[I]+QR[I] #!= QC[J]+QR[J]
  end,
  solve(QR++QC).
```

```
Picat> queens(4,Q).
Q = [{1,2},{2,4},{3,1},{4,3}] ?;
Q = [{1,3},{2,1},{3,4},{4,2}] ?;
Q = [{1,2},{2,4},{4,3},{3,1}] ?;
Q = [{1,3},{2,1},{4,2},{3,4}] ?;
Q = [{1,2},{3,1},{2,4},{4,3}] ?;
Q = [{1,3},{3,4},{2,1},{4,2}] ?;
Q = [{1,3},{3,1},{4,3},{2,4}] ?;
Q = [{1,3},{3,4},{2,1},{4,2}] ?;
Q = [{1,3},{3,4},{2,1}] ?;
```

### Where is the problem?

- Different assignments describe the same solution!
- There are only two different solutions (very "similar" solutions).
- The search space is non-necessarily large.

### Solution

pre-assign queens to rows (or to columns)

# 4-queens: a better model

```
import cp.

queens2(N,Queens) =>
    QR = 1..N,
    QC = new_list(N), QC :: 1..N,
    Queens = zip(QR,QC),
    all_different(QC),
    all_different([$QC[I]-I : I in 1..N]),
    all_different([$QC[I]+I : I in 1..N]),
    solve(QC).

Picat> queens2(4,Q).
Q = [{1,2},{2,4},{3,1},{4,3}] ?;
Q = [{1,3},{2,1},{3,4},{4,2}] ?;
no
```

### **Model properties:**

- less variables (= smaller state space)
- less constraints (= faster propagation)

### **Homework:**

think about further improvements (symmetry breaking)

# 4-queens: a dual model

### A dual model swaps the roles of values and variables.

Instead of looking for positions of queens we will be deciding whether or not a given cell contains a queen.

| Picat> queens2(4,B).                                        |    |
|-------------------------------------------------------------|----|
| $B = \{\{0,0,1,0\},\{1,0,0,0\},\{0,0,0,1\},\{0,1,0,0\}\}\$  | ?; |
| $B = \{\{0,1,0,0\},\{0,0,0,1\},\{1,0,0,0\},\{0,0,1,0\}\}\}$ | ?; |
| no                                                          |    |

### **Comments:**

 The above model is less appropriate for CP due to Boolean domains and weak constraints. Better suited for SAT.

| model     | #backtracks<br>(8 queens) |
|-----------|---------------------------|
| naive     | 24                        |
| classical | 24                        |
| dual      | 8540                      |

# Back to Sudoku

```
import cp.
                                                   6
                                                     8
                                                        3
                                                          2
                                                             5
                                                                    9
                                                               6
                                                                  4
sudoku(Board) =>
                                                2
                                                   5
                                                     4
                                                        6
                                                          8
                                                             9
                                                                    1
  N = Board.length,
                                                8
                                                   2
                                                        4
                                                          3
                                                                    6
  N1 = ceiling(sqrt(N)),
                                                4
                                                   9
                                                     6
                                                        8
                                                          5
                                                               3
  Board :: 1..N,
                                                   3
                                                     5
                                                        9
                                                          6
                                                             1
                                                               8
                                                                    4
  foreach (R in 1..N)
                                                   8
                                                     9
                                                             3
                                                                    2
                                                               4
                                                                  6
       all different([Board[R,C] :
                                                        2
                                                             6
                                                3
                                                   1
                                                     7
                                                          4
                                                               9
                                                                  8
                                                                    5
                                                        5
                                                          9
                                                             8
                                                   4
                           C in 1..N])
```

```
end,
                board(Board) =>
foreach (C in 1
                   Board = {{_, 6, _, 1, _, 4, _, 5, _},
    all differ
                            {_, _, 8, 3, _, 5, 6, ,
end,
                                                      1},
                            {2,
foreach (R in 1
                            {8,
                                                      6},
    all differ
                            {7,
                                                      4},
                                                      2},
end,
                                             6, 9,
                                      2,
                            {_, 4, _, 5, _, 8, _, 7, _}}.
solve (Board).
```

# Seesaw problen

### The problem:

Adam (36 kg), Boris (32 kg) and Cecil (16 kg) want to sit on a seesaw with the length 10 foots such that the minimal distances between them are more than 2 foots and the seesaw is balanced.



### A CSP model:

- A,B,C in -5..5
- 36\*A+32\*B+16\*C=0
- |A-B|>2, |A-C|>2, |B-C|>2 minimal distances

position

equilibrium state

# Seesaw problem - implementation

Picat> seesaw(X).

X = [-4,2,5] ?;

X = [-4,4,1] ?;

X = [-4,5,-1] ? ;

X = [4,-2,-5] ?;

no

X = [4, -5, 1] ? ;X = [4,-4,-1] ? ;

```
import cp.
seesaw(Sol) =>
   Sol = [A,B,C],
   Sol :: -5..5,
   36*A+32*B+16*C #= 0,
   abs (A-B) #>2, abs (A-C) #>2, abs (B-C) #>2,
   solve(Sol).
```

# Symmetry breaking

important to reduce search space

```
import cp.
                                                  Picat> seesaw(X).
seesaw(Sol) =>
   Sol = [A,B,C],
                                                  X = [-4,2,5] ?;
   Sol :: -5..5,
                                                  X = [-4,4,1] ?;
   A \#=< 0,
                                                  X = [-4,5,-1] ?;
   36*A+32*B+16*C #= 0,
   abs (A-B) #>2, abs (A-C) #>2, abs (B-C) #>2,
                                                  no
   solve (Sol) .
```

# Seesaw problem - a different perspective

```
[A,B,C] :: -5..5,

A #=< 0,

36*A+32*B+16*C #= 0,

abs(A-B) #>2,

abs(A-C) #>2,

abs(B-C) #>2

C in -5..5
```

A set of similar constraints typically indicates a structured sub-problem that can be represented using a **global constraint**.



We can use a global constraint describing **allocation of activities to exclusive resource**.



# Golomb ruler

A ruler with M marks such that distances between any two marks are different.

The **shortest ruler** is the optimal ruler.



**Hard** for  $M \ge 16$ , no exact algorithm for  $M \ge 24$ !

Applied in radioastronomy.





# Golomb ruler – a model

### A base model:

### **Model extensions:**



$$\begin{split} D_{i,j} &= D_{i,i+1} + D_{i+1,i+2} + ... + D_{j-1,j} \\ &\text{so } \mathbf{D_{i,j}} \geq \Sigma_{\mathbf{j}-\mathbf{i}} = (\mathbf{j}-\mathbf{i})^*(\mathbf{j}-\mathbf{i}+\mathbf{1})/2 \qquad \qquad \textit{lower bound} \\ X_M &= X_M - X_1 = D_{1,M} = D_{1,2} + D_{2,3} + ... \ D_{i-1,i} + D_{i,j} + D_{j,j+1} + ... + D_{M-1,M} \\ D_{i,j} &= X_M - (D_{1,2} + ... \ D_{i-1,i} + D_{j,j+1} + ... + D_{M-1,M}) \\ &\text{so } \mathbf{D_{i,i}} \leq \mathbf{X_M} - (\mathbf{M}-\mathbf{1}-\mathbf{j}+\mathbf{i})^*(\mathbf{M}-\mathbf{j}+\mathbf{i})/2 \qquad \textit{upper bound} \end{split}$$

# Golomb ruler in Picat

```
import cp.
golomb(M,X) =>
   X = new list(M),
   X :: 0..(M*M),
                                         % domains for marks
   X[1] = 0,
   foreach(I in 1..(M-1))
      X[I] \# < X[I+1]
                                         % no permutaions
   end,
   D = new array(M,M),
                                         % distances
   foreach(I in 1..(M-1),J in (I+1)..M)
      D[I,J] #= X[J] - X[I],
      D[I,J] \#>= (J-I)*(J-I+1)/2, % bounds
      D[I,J] \#=< X[M] - (M-1-J+I)*(M-J+I)/2
   end,
   D[1,2] \# < D[M-1,M],
                                         % symmetry breaking
   all different([$D[I,J] : I in 1..(M-1),
                             J in (I+1)..M]),
   solve(\$[min(X[M])],X).
```

# Golomb ruler - some results

### What is the effect of different constraint models?

| size | base model | base model            | base model            |
|------|------------|-----------------------|-----------------------|
|      |            | + symmetry + symmetry |                       |
|      |            |                       | + implied constraints |
| 7    | 12         | 7                     | 4                     |
| 8    | 94         | 44                    | 21                    |
| 9    | 860        | 353                   | 143                   |
| 10   | 7 494      | 3 212                 | 1 091                 |
| 11   | 147 748    | 57 573                | 23 851                |

time in milliseconds on 1,7 GHz Intel Core i7, Picat 1.9#6

### What is the effect of different search strategies?

| size | fail first |         | leftmo | st first |
|------|------------|---------|--------|----------|
|      | enum       | split   | enum   | split    |
| 7    | 9          | 9       | 5      | 4        |
| 8    | 67         | 68      | 23     | 21       |
| 9    | 537        | 537     | 170    | 143      |
| 10   | 4 834      | 4 721   | 1 217  | 1 091    |
| 11   | 134 071    | 132 046 | 26 981 | 23 851   |

time in milliseconds on 1,7 GHz Intel Core i7, Picat 1.9#6

# Sky Observatory

- Assume a sky observatory with four telescopes:
  - Newton, Kepler, Dobson, Monar
- Each day, each telescope is used by one of the following **observers**:
  - scientists (3), students (2), visitors (1), nobody (0)
- Each day, we know the expected weather
  - ideal (0), worse (1), no-observations (2)
- and phases of the moon
  - 0 (new moon), ..., 4 (full moon), 5, 6.
- The problem input is defined by two lists (of equal length) of weather and moon conditions:
  - -[1,1,0,0,1,2,1,0],
  - -[1,1,2,2,3,3,4,4]

- Newton and Kepler cannot be used together.
- Newton cannot be used by visitors.
- Scientists are never using Monar.
- Dobson cannot be used around full moon (3-5).
- Scientists (students) use at most one telescope each day.
- Students must use at least one telescope during the whole scheduling period.
- When the weather is ideal either students or scientists must use some telescope.

# Sky Observatory - objectives

 Using each telescope costs some money (expenses), and visitors pay some money (income) for using the telescope according to the following table:

|          | Monar | Dobson | Kepler | Newton |
|----------|-------|--------|--------|--------|
| expenses | 10    | 50     | 60     | 70     |
| income   | 20    | 60     | 100    | 100    |

- In case of bad weather or bad moon conditions (3-5) there is 50% **discount** for visitors when using Monar or Dobson.
- There is some initial budget given and the final balance cannot be negative.
- Maximize scientific output of observations (scientists are preferred over students that are preferred over the visitors).

# Sky Observatory - constraint model

```
sky(Moon,Weather,Budget, Schedule,Money) =>
     N = length(Moon),
                                               % number of days
     Schedule = [[_,_,_,
Money = new_list(N),
                           _] : _ in 1..N],
      foreach({M,W,B,S} in zip(Moon,Weather,Money,Schedule))
        S = [Newton, Kepler, Dobson, Monar],
        if W = 2 then S :: 0..0
                                              % bad weather -> non observations
                  else S :: 0..3
                                               % possible users of telescopes
        Newton#=0 #\/ Kepler#=0,
                                               % Newton and Kepler cannot be used together
                                               % Newton cannot be used by visitors
        Newton #!= 1,
        Monar #!= 3,
                                               % scientists are never using Monar
        if 3=<M, M=<5 then Dobson#=0 end, % Dobson cannot be used around full moon (3-5)
        [Nobody, Visitors, Students, Scientists] :: 0..4,
        global_cardinality(S, $[0-Nobody,1-Visitors,2-Students,3-Scientists]),
        Scientists #=< 1, Students #=< 1,
                 % scientists (students) use at most one telescope each day
        if W=0 then Scientists+Students #> 0 end,
           % when the weather is ideal either students or scientists must use some telescope
       table_in({Monar,ME,MI}, [{0,0,0},{1,10,20},{2,10,0},{3,10,0}]),
table_in({Dobson,DE,DI}, [{0,0,0},{1,50,60},{2,50,0},{3,50,0}]),
table_in({Kepler,KE,KI}, [{0,0,0},{1,60,100},{2,60,0},{3,60,0}]),
        table in({Newton, NE, NI}, [{0,0,0},{1,70,100},{2,70,0},{3,70,0}]), if ((\overline{3}=<M, M=<5); W=1) then
                 % bad weather or bad moon conditions -> 50% discount for Monar or Dobson
           B \# = (ME+DE+KE+NE-MI/2-DI/2-KI-NI)
        else
           B #= (ME+DE+KE+NE-MI-DI-KI-NI)
        end
     end,
     Budget #>= sum(Money)
     Vars = flatten(Schedule),
     count(2, Vars, #>, 0),
                                               % students must use at least one telescope
     Obj #= sum(Vars),
solve([max,$max(Obj)],Vars).
                                              % scientists first, then students, then visitors
```



# Some Real Applications

# **Bioinformatics**

- DNA sequencing (Celera Genomics)
- deciding the 3D structure of proteins from the sequence of amino acids

# **Planning and Scheduling**

- automated planning of spacecraft activities (Deep Space 1)
- manufacturing scheduling



### **Books**

- P. Van Hentenryck: Constraint Satisfaction in Logic Programming, MIT Press, 1989
- E. Tsang: **Foundations of Constraint Satisfaction**, Academic Press, 1993
- K. Marriott, P.J. Stuckey: Programming with Constraints: An Introduction, MIT Press, 1998
- R. Dechter: **Constraint Processing**, Morgan Kaufmann, 2003
- Handbook of Constraint Programming, Elsevier, 2006
- N-F. Zhou, H. Kjellerstrand, J. Fruhman: Constraint Solving and Planning in Picat, Springer 2015

### **Journals**

- Constraints, An International Journal. Springer Verlag
- Constraint Programming Letters, free electronic journal

### **On-line resources**

- Course Web (transparencies) http://ktiml.mff.cuni.cz/~bartak/podminky/
- On-line Guide to Constraint Programming (tutorial) http://ktiml.mff.cuni.cz/~bartak/constraints/
- Constraint Programming online (community web) http://www.cp-online.org/





Roman Barták
Charles University, Faculty of Mathematics and Physics
bartak@ktiml.mff.cuni.cz