Constraints in Picat
(and Prolog)

Practical Exercises

Recall: We would like to have:
?-3=1+2. ?-X=1+2.
no X=3
?2-X=1+2
X=1+2; ?-3=X+1.
no X=2
?-3=X+1
no ?-3=X+Y,¥=2.
X=1
What is the problem?
Term has no meaning (even if it ?2-3=X+Y,¥>=2 ,X>=1.
consists of numbers), it is just a X=1

i |
syntactic structure! ¥=2

* For each variable we define its domain.

— we will be using discrete finite domains only
— such domains can be mapped to integers

* We define constraints/relations between the variables.

[X,Y] :: 0..100, 3#=X+Y, Y#>=2, X#>=1.

* Recall a constraint satisfaction problem.
* We want the system to find the values for the variables
in such a way that all the constraints are satisfied.

X=1, ¥Y=2

How is constraint satisfaction realized?

— For each variable the system keeps its actual domain.

— When a constraint is added, the inconsistent values are
removed from the domain.

Example:
X Y
inf..sup inf..sup
[X,Y] :: 0..100 0..100 0..100
3#=X+Y 0..3 0..3
Y#>=2 0..1 2..3
X#>=1 1 2

Picat is a programming language incorporating features from
multiple programming paradigmes.

The purpose is to bridge the gap between imperative and
declarative languages.

gsort([]) = [I].
gsort ([H|T]) = L =>
L = gsort([X : X in T, X =< H])
++ [H]
++ gsort([X : X in T, X > H]).

www.pilcat-lang.org

Assign different digits to letters such that SEND+MORE=MONEY
holds and S#0 and M=0.

Idea:
generate assignments with different digits and check the constraint

crypto naive(Sol) =>

Sol = [S,E,N,D,M,0,R,Y],

Digitsl 9 =1..9,

DigitsO 9 = 0..9,

member (S, Digitsl 9),

member (E, Digits0 9), E!=S,

member (N, Digits0 9), N!=S, N!=E,

member (D, Digits0_9), D!=S, D!=E, D!=N,

member (M, Digitsl 9), M!=S, M!=E, M!=N, M!=D,

member (O, DigitsO 9), O!=sS, O!=E, O!=N, O!=D, O!=M,

member (R, Digits0 9), R!=S, R'!'=E, R!=N, R!=D, R!=M, R!=0,

member (Y, Digits0 9), Y!=S, Y!=E, Y!=N, Y!=D, Y'=M, Y!=0, Y!=R,
1000*sS + 100*E + 10*N + D +
1000*M + 100*0O + 10*R + E =

10000*M + 1000*0O + 100*N + 10*E + Y.

crypto _better (Sol) =>
Sol = [S,E,N,D,M,O,R,Y],
Digitsl 9 =1..9,
DigitsO0 9 = 0..9,
$ D+E = 10*P1l+Y
member (D, DigitsO 9),
member (E, Digits0_9), E!=D,
Y is (D+E) mod 10, Y'=D, Y!=E,
Pl is (D+E) // 10, % carry bit

% N+R+P1 = 10*P2+E <;£§§'

member (N, Digits0_9), N!=D, N!=E, N!=Y, .,
R is (10+E-N-P1l) mod 10, R!=D, R!=E, R!=Y, R!=N,
P2 is (N+R+P1l) // 10,

Some letters can be
computed from other
letters and invalidity
of the constraint can
be checked before all
letters are kno

$ E+0+P2 = 10*P3+N
O is (10+N-E-P2) mod 10, O!=D, O!=E, O'!=Y, O!=N, O!=R,
P3 is (E+0+P2) // 10,

% S+M+P3 = 10*M+O

member (M, Digitsl 9), M!=D, M!=E, M!=Y, M!=N, M!=R, M!=0,
S is 9*M+0-P3,

s$>0,s<10, s'=D, S!'=E, S!=Y, S!=N, S!'=R, S!=0, S!=M.

Domain filtering can take care about computing values for
letters that depend on other letters.

import cp.

crypto(Sol) => ‘
Sol=[S,E,N,D,M,0O,R,Y],
Sol :: 0..9,

S #!'= 0, M #!'= 0,
1000*s + 100*E + 10*N + D +
1000*M + 100*0 + 10*R + E #=
10000*M + 1000*0O + 100*N + 10*E + Y,

all different(Sol), - -
- assign values (from domains) to
solve (Sol) . <[variables — depth first search }

Note: It is also possible to use a model with carry bits.

A typical structure of CLP programs in Picat:

lmport CPp. Definition of CLP operators,
constraints and solvers

problem(Variables) =>

declare variables (Variables) ,g" Definition of variables
- and their domains

post constraints(Variables), — " nition of
constraints

solve (Variables).

T~

Control part

- exploration of space of assignments

- assigning values to variables

« looking for one, all, or optimal solution

Declarative model

Domain in Picat is a set of integers
— other values must be mapped to integers
— integers are naturally ordered

Frequently, domain is an interval
— ListOfVariables :: MinVal. .MaxVal

— defines variables with the initial domain
{MinVal,...,MaxVal}

For each variable we can define a separate domain (it
is possible to use any expression providing a list of
integers)

— X :: Expr

- X :: [1,2,3,8,9,15]++[27,28]

Classical arithmetic constraints with operations
+,-, *, /, abs, min, max,... operations are built-in

It is possible to use comparison to define a
constraint #=, #<, #>, #=<, #>=, #!=

Picat> A+B #=< C-2.

What if we define a constraint before defining
the domains?

— For such variables, the system assumes initially the
infinite domain -MinInt..+MaxInt

Arithmetic (reified) constraints can be connected using
logical operations:

* #~ :Q negation

:P #/\ :Q conjunction
:P #\/ :Q disjunction
P #=> :Q implication
:P #<=> :Q equivalence

P and Q could be Boolean variables (constants) or
arithmetic, domain or Boolean constraints

Constraints alone frequently do not set the
values to variables. We need to instantiate
the variables via search.

* indomain (X)

— assign a value to variable X (values are tried
in the increasing order upon backtracking)

* solve (Vars)
— instantiate variables in the list Vars

— algorithm MAC — maintaining arc consistency
during backtracking

solve(:0ptions, +Variables)

* variable ordering
— forward, backward, degree, constr,

min, max, min, ff, ffc, f££d4, ..
* value ordering
—split, reverse_ split
—down, rand
* optimization
—$min(X), Smax(X)

Which decision variables are needed?
— variables denoting the problem solution
— they also define the search space
Which values can be assigned to variables?

— the definition of domains influences the
constraints used

How to formalise constraints?
— available constraints

— auxiliary variables may be
necessary

Propose a constraint model for solving the N-queens problem
(ﬁlace four queens to a chessboard of size NX N such that
there is no conflict).

import cp.

queens (N, Queens) =>
OR = new_1list(N), QR :: 1..N,
QC = new_1list(N), QC :: 1..N
Queens = zip(QR,QC),
foreach(I in 1..N, J in (I+1l)..N)
OR[I] #'= QR[J],
QC[I] #!'= QC[J],
QC[I]-QR[I] #'= QC[J]-QR[J],
QC[II+QR[I] #!'= QC[J]+QR[J]
end,
solve (QR++QC) .

position in rows
position in columns
coordinates of queens

M ’

o0 o° d°

oP

different rows
different columns
different diagonals

o0 o°

4-queens: analysis

Picat> queens (4,Q).

= [{1,2},{2,4},{3,1},{4,3}]
= [{1,3},{2,1},{3,4},{4,2}]
[{1,2},{2,4},{4,3},{3,1}]
[{1,3},{2,1},{4,2},{3,4}]
[{1,2},{3,1},{2,4},{4,3}]
[{1,3},{3,4},{2,1},{4,2}]
[{1,2},{3,1},{4,3},{2,4}]
= [{1,3},{3,4},{4,2},{2,1}] ? ;

A° JEELS BT BEEES JEEES BECES BRIV 2]

10 1010 1010000
I

Where is the problem?
— Different assignments describe the same solution!
— There are only two different solutions (very ,similar* solutions).
— The search space is non-necessarily large.

Solution
— pre-assign queens to rows (or to columns)

4-queens: a better model

import cp.

queens2 (N,Queens) =>
OR = 1..N,
QC = new_1list(N), QC :: 1..N,
Queens = zip (QR,QC),
all different(QC),
all different([$SQC[I]-I : I in 1..N]),
all different([$QC[I]+I : I in 1..N]),
solve (QC) .

Picat> queens2(4,Q).

Q= [{1,2},{2,4},{3,1},{4,3}] 2;
Q= [{1,3},{2,1},{3,4},{4,2}] ?;
no

Model properties:
— less variables (= smaller state space)
— less constraints (= faster propagation)

Homework:
— think about further improvements (symmetry breaking)

A dual model swaps the roles of values and variables.

Instead of looking for positions of queens we will be deciding whether or not a given cell
contains a queen.

import cp.
queens_dual (N,Board) =>

Board = new_array(N,N),
Board :: 0..1

foreach(R in 1..N) % at most one queen per row
sum([Board[R,C] : C in 1..N]) #=< 1

end,

foreach(C in 1..N) % at most one queen per column

sum([Board[R,C] : R in 1..N]) #=< 1

end,

foreach(D in 0..(N-1)) % at most one queen per diagonal
sum([Board[I,I+D] : I in 1..(N-D)]) #=< 1,
sum([Board[I+D,I] : I in 1..(N-D)]) #=< 1,
sum([Board[N-I+1,I+D] : I in 1..(N-D)]) #
sum([Board[N-I+1-D,I] : I in 1..(N-D)]) #

end,

sum([Board[R,C] : R in 1..N, C in 1..N]) #= N,

solve (Board) .
_ #tbacktracks
Picat> queens2(4,B).
B = {{0,0,1,0},{1,0,0,0},{0,0,0,1},{0,1, ?; (8 queens)
B ?;
n

<1,
< 1

= 0,0}}
= {{0,1,0,0},{0,0,0,1},{1,0,0,0},{0,0,1,0}} ’

o naive 24
Comments: classical 24
— The above model is less appropriate for CP due to Boolean domains dual 8540

and weak constraints. Better suited for SAT.

import cp.

9(6|311|7(4]2(5]|8
sudoku (Board) => 117|18|3|2|5]6(4|9
N = Board.length, 215/416/8|9]7/3 1
N1 = ceiling(sqrt(N)), £ Il
Board :: 1..N 4196852317
te T 713|(5|9(6|1]|8|2|4
foreach(R in 1..N) 5/8(9l7111314]6(2
all different([Board[R,C] 3111712141619(8]5
C in 1..N]) 6(4|215|9(8|1(7]|3
end,
foreach(C in 1board(Board) =>
- Board = {{ 14 6! 14 1I 4 4/ 4 5/ }I
all differ {— 8 3. 5 & _}
end’ {EI :l 7 :I T 7 :I I}I
foreaCh(R in 1 {8, _r 4, 7 7, _r 6},
all differ {_I 7 6/ 1 _7 3/ _ _}/
- {71 I A 4 9/ 7 1/ 7 4}/
{51 Y A AR A A S A 4 2}/
end, {, 7,2, , 6,9, _, 1},
solve (Board) . {_, 4, _, 5 _,8, _, 7, _}}

Seesaw problem

o

The problem:

Adam (36 kg), Boris (32 kg) and Cecil (16 kg)
want to sit on a seesaw with the length 10 foots

such that the minimal distances between them are more than 2
foots and the seesaw is balanced.

A CSP model:

 AB,Cin-5.5 position
 36*A+32*B+16*C=0 equilibrium state
 |A-B|>2, |A-C|>2, |[B-C|>2 minimal distances

Seesaw problem - implementation

import cp. |

seesaw (Sol) => Picat> seesaw (X) .

Sol = [A,B,C],

Sol :: -5..5, X =1[-4,2,5] ?

X = [-41411] ?
36*A+32*B+16*C #= 0, X =[-4,5,-1]1 ? ;
abs (A-B) #>2, abs (A-C)#>2, abs(B-C)#>2, X = [4,-5,1] ? ;

X = [4,-4,-1] ? ;
solve (Sol) . X = [4,-2,-5] 2 ;

Symmetry breaking no 7
— important to reduce search space

import cp. |

seesaw (Sol) => Picat> seesaw(X).
Sol = [A,B,C],
Sol :: -5..5, X=1[-4,2,5] ? ;

X =1[-4,4,1] ? ;
A #=< 0, X =1[-4,5,-1] ? ;
36*A+32*B+16*C #= 0,
abs (A-B) #>2, abs (A-C)#>2, abs (B-C)#>2, no

solve (Sol) .

Seesaw problem - a different perspective

[A,B,C] :: =-5..5,

A #=< 0,

36*A+32*B+16*C #= O,

abs (A-B) #>2, A in -5..0
O E B in -2..5
abs (B-C) $>2 C in -5..5

A set of similar constraints typically indicates a structured sub-problem that
can be represented using a global constraint.

= [C

A B C

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
We can use a global constraint describing allocation of activities to exclusive
resource.
[A,B,C] :: =-5..5,
A #=< 0,
36*A+32*B+16*C #= 0
cumulative([A,B,C], [3,3,3],[1,1,1],1) A in -5..0
B in -2..5
C in -5..5

cumulative(starts,durations,resources,limit)

Golomb ruler

3 Golom nb ruler table - Microsoft Internet Explore: =
- Soubor Upravy Zobrazt Oblbené Nistroje Napovéda
A ruler with M marks such that Q- O o] &) [t e @ @[3 L B -
. Advesa [£] research.ibm. himl] [EJ Prest | odkazy | Norton antvirus] -
distances between any two marks Gorgle-fombric ottt % [0-B - 5|
.
are different. Personal communication==¥%
The Shortest ruler is the Optimal Thiswebpagecomainsamblegishgﬂnelenglhsof&cshones!k'nownGolombmlusforupto
150 marks. The values for 23 marks or less are known to be optimal. For the actual rulers see
ruler. + known optimal rulers
o best rulers from projective plane construction
« best rulers from affine plane construction
o 1 4 9 1 1 Table of lengths of shortest known Golomb rulers
I I I I I marks length found by proved by comments
1 0 trivial
2 1 trivial
3 3 trivial
4 6 trivial
. 5 11 1952 WB 19677 RB hand search
Hard for M>16, no exact algorithm 6 17 195 WB 197 RBhamdsemch
7 25 1952 WB 19677 RB hand search
for M > 24! 8 34 1952 WB 1972 WM hand search
- 9 44 1972 WM1972 WM computer search
10 55 1967 RB 1972 WM projective plane construction p=9
H H H 11 72 1967 RB 1972 WM projective plane construction p=11
Applled In radloaStronomy' 12 85 1967 RB 1979 JR1 projective plane construction p=11
13 106 1981 JR2 1981 JR2 computer search
14 127 1967 RB 1985 JS1 projective plane construction p=13
15 151 1985 JS1 1985 JS1 computer search
16 177 1986 JS1 1986 JS1 computer search
17 199 19847 AH 1993 OS affine plane construction p=17
18 216 1967 RB 1993 OS projective plane construction p=17
so'°m°n w' GOIomb 19 246 1967 RB 1994 DRM projective plane construction p=19
Professor 20 283 1967 RB 19977 GV projective plane construction p=19
u - - fs h c l.f - 21 333 1967 RB 1998 GV projective plane construction p=23
n’vers’ty o OUt ern Calirornia 22 356 19847 AH 1999 GV affine plane construction p=23
http://csi.usc.edu/faculty/golomb.html fi 372 1967 RB 1999 GV projective plane construction p=23

425 196/ RB projective plane construction p=23

A base model:

Variables X, ..., Xy with the domain 0..M*M

X,=0 ruler start
X:< X5<...< X no permutations of variables
Vi<j D;; = X; = X; difference variables

all_different({D; ;, Dy 3, ... D1, D23, «.. Dppcami})

Model extensions:

- s
1=
H
©
-
-

D1, <Dmam symmetry breaking

X7 10 11

better bounds (implied constraints) for D, ;

Dij=Dijis1 + Disgjisa + ... + Djyg

so D;; > 3y = (j-i) *(j-i+1)/2 lower bound

Xm=Xm—X1=Dym=D12+Dy3+...Dig i+ Dij+ Dy + ... + Dyiam

Di,j = XM - (Dl,Z + ... Di-l,i + Dj,j+1 +..+ DM-l,M)

s0 D;; < Xy = (M-1-j+i)*(M-j+i)/2 upper bound

import cp.

golomb (M,X) =>
X = new_list(M),
X :: 0..(M*M), % domains for marks
X[1] = O,

foreach(I in 1.. (M-1))
X[I] #< X[I+1] % no permutaions
end,

D = new_array(M,M), % distances
foreach(I in 1..(M-1),J in (I+1)..M)

D[I,J] #>= (J-I)*(J-I+1)/2, % bounds
D[I,J] #=< X[M] - (M-1-J+4I)* (M-J+I)/2
end,
D[1,2] #< D[M-1,M], % symmetry breaking

all different([$D[I,J] : I in 1..(M-1),
J in (I+1)..M]),
solve ($[min(X[M])]1,X).

What is the effect of different constraint models?

size | base model base model base model
+ symmetry + symmetry
+ implied constraints

7 12 7 4

8 924 44 21

9 860 353 143

10 7 494 3212 1091

11 147 748 57 573 23 851

time in milliseconds on 1,7 GHz Intel Core i7, Picat 1.9#6

What is the effect of different search strategies?

size fail first leftmost first
enum split enum split
7 9 9 5 4
8 67 68 23 21
9 537 537 170 143
10 4 834 4721 1217 1091
11 134 071 132 046 26 981 23 851

time in milliseconds on 1,7 GHz Intel Core i7, Picat 1.9#6

e Assume a sky observatory with four telescopes:
— Newton, Kepler, Dobson, Monar

* Each day, each telescope is used by one of the
following observers:

— scientists (3), students (2), visitors (1), nobody (0)

e Each day, we know the expected weather
— ideal (0), worse (1), no-observations (2)

e and phases of the moon
— 0 (new moon), ..., 4 (full moon), 5, 6.

* The problem input is defined by two lists (of equal
length) of weather and moon conditions:
-[1,1,0,0,1,2,1,0],

- 11,1,2,2,3,3,4,4]

Newton and Kepler cannot be used together.
Newton cannot be used by visitors.

Scientists are never using Monar.

Dobson cannot be used around full moon (3-5).

Scientists (students) use at most one telescope
each day.

Students must use at least one telescope during
the whole scheduling period.

When the weather is ideal either students or
scientists must use some telescope.

Using each telescope costs some money (expenses),
and visitors pay some money (income) for using the
telescope according to the following table:

Monar Dobson Kepler Newton
expenses 10 50 60 70
income 20 60 100 100

In case of bad weather or bad moon conditions (3-5)
there is 50% discount for visitors when using Monar or
Dobson.

There is some initial budget given and the final
balance cannot be negative.

Maximize scientific output of observations
(scientists are preferred over students that
are preferred over the visitors).

sky (Moon,Weather,Budget, Schedule,Money) =>
N = length(Moon), % number of days
Schedule = [[_,_,_,_] ¢ _ in 1..N],
Money = new_list(N),

foreach({M,W,B,S} in zip(Moon,Weather, Money,Schedule))
S = [Newton, Kepler, Dobson, Monar],

if W= 2 then S :: 0..0 % bad weather -> non observations
else S :: 0..3 % possible users of telescopes
end,
Newton#=0 #\/ Kepler#=0, % Newton and Kepler cannot be used together
Newton #!= 1, % Newton cannot be used by visitors
Monar #!= 3, % scientists are never using Monar

if 3=<M, M=<5 then Dobson#=0 end, % Dobson cannot be used around full moon (3-5)
[Nobody,Visitors,Students,Scientists] :: 0..4,
global cardinality(S, $[0-Nobody,l-Visitors,2-Students,3-Scientists]),
Scientists #=< 1, Students #=< 1,
% scientists (students) use at most one telescope each day
if W=0 then Scientists+Students #> 0 end,
% when the weather is ideal either students or scientists must use some telescope
table in({Monar,ME,MI}, [{0,0,0},{1,10,20},{2,10,0},{3,10,0}]),
table in({Dobson,DE,DI}, [{0,0,0},{1,50,60},{2,50,0},{3,50,0}1),
table in({Kepler,KE,KI}, [{0,0,0},{1,60,100},{2,60,0},{3,60,0}1),
table in({Newton,NE,NI}, [{0,0,0},{1,70,100},{2,70,0},{3,70,0}]),
if ((3=<M, M=<5) ; W=1) then
% bad weather or bad moon conditions -> 50% discount for Monar or Dobson
B #= (ME+DE+KE+NE-MI/2-DI/2-KI-NI)
else
B #= (ME+DE+KE+NE-MI-DI-KI-NI)
end
end,

Budget #>= sum(Money),

Vars = flatten(Schedule),

count(2,Vars,#>,0), % students must use at least one telescope

Obj #= sum(Vars), % scientists first, then students, then visitors
solve([max, $max(Obj)],Vars).

i e
Discove p:i‘
e ca==\" Bioinformatics
p:,y ~J + DNA sequencing (Celera
Junmmmelihet o = Genomics)
e T deciding the 3D structure of

2 oo proteins from the sequence
) of amino acids

Planning and Scheduling

automated planning of
spacecraft activities (Deep B
Space 1) Mabewitanla 2 L

highly successful primary mis:
advanced, high-risk technolo,

manufacturing scheduling “ e ot oy

> best images and other scienf

a comet. During its #§
hyperextended mission, it cd
technology tests. The spaceci
on December 18, 2001

Books

— P. Van Hentenryck: Constraint Satisfaction in Logic Programming, MIT
Press, 1989

— E. Tsang: Foundations of Constraint Satisfaction, Academic Press, 1993

— K. Marriott, P.J. Stuckey: Programming with Constraints: An
Introductlon MIT Press, 1998

— R. Dechter: Constraint Processing, Morgan Kaufmann, 2003
— Handbook of Constraint Programming, Elsevier, 2006

— N-F. Zhou, H. Kjellerstrand, J. Fruhman: Constraint Solving and Planning
in Picat, Springer 2015

Journals
— Constraints, An International Journal. Springer Verlag
— Constraint Programming Letters, free electronic journal

On-line resources

— Course Web é:transparenaes
http://ktiml.mff.cuni.cz/~bartak/podminky/

— On-line Guide to Constraint Programming (tutorial)
http://ktiml.mff.cuni.cz/~bartak/constraints/

— Constraint Programming online (community web)
http://www.cp-online.org/

