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Who are we?

✤ HENNING: Danish computer scientist; works since 1980 comp.sci. disciplines and a range of 
interdisciplinary topics, including (constraint) logic programming technology and applications 
for AI and language processing, database theory, knowledge representation and reasoning, 
bioinformatics, and recently interactive installations in art museums. 

✤ Developed several high-level logic programming systems, including CHR Grammars, and has 
shown an important, direct correspondence between abductive reasoning and constraint logic 
program with CHR.

✤ Received best paper award (with John Gallagher) at ICLP 2009

✤ VERONICA: Argentine/Canadian computer scientist- one of the 15 founders of the field of logic 
programming, most notably for her work on logic grammars and natural language processing. 

✤ Pioneered extensions and uses of logic programming in the fields of computational linguistics, 
deductive knowledge bases, computational molecular biology and web based virtual worlds. 

✤ Received numerous scientific awards -- such as the Calouste Gulbenkian Award for Science and 
Technology
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A few remarks before we start

✤ All example programs available on the website (TBA)

✤ Tested in SICStus 4; should be compatible with SWI

✤ No theorems (find them in the references), just programming :)

✤ No time for exercises during the course :(

✤ Please feel free to ask questions, to disagree even.
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Introduction

✤ What is Computational Linguistics? 
✤ The art of simulating language understanding by computers 

✤ Language in a General Sense: 
✤ Spoken	human	languages:	speech,	text,	dialogue.	
✤ Molecular	Biology	languages	
✤ Rhythmic,	dance,	poe:c,	musical,	…	

✤ What are Logic Grammars?  
✤ Symbol rewriting formalisms that view language descriptions as 

executable programs. The symbols they rewrite are logic grammar 
symbols (i.e., identifiers plus logic terms: variables, constants or 
functional expressions) 
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Understanding Spoken Language

A literary and an everyday example: 

✤ Love’s heralds should be thoughts, which ten times faster glide that the 
sun’s beams, driving back shadows over lowering hills. 
(Juliet’s monologue, scene V, Romeo & Juliet) 

✤ I was caught speeding. He gave me a ticket. 

What language can express encompasses no less than the entire range of 
human experience 

Therefore, the central issues are the same as in AI: domain knowledge, 
problem solving, reasoning, non-monotonicity, belief revision, metaphor, 
planning, learning… Plus a few of its own. 
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Language Analysis 

Levels   
✤ Prosody: rhythm and intonation 
✤ Phonology: sounds 
✤ Morphology: components of words (morphemes) 
✤ Syntax: rules for combining words into sentences and phrases 
✤ Semantics: meaning of words, sentences 
✤ Pragmatics: ways of using language 
✤ World Knowledge: physical, human, knowledge 

Stages 
✤ Parsing: analyses syntactic structure: verifies well-formedness, produces 

parse tree 
✤ Semantic Interpretation: produces some meaning representation of the 

utterance. 
✤ Expanded Interpretation: adds structures from the knowledge base 
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Ex. 1: a logic grammar for the 
formal language {an bm}

s	-	->	as,	bs.																																																									Deriva:on:														s	
																																																																																		as																	bs	

	 as-	->	[a].	 	 	 	 	 bs	-	->	[b].																																																													
	 as-	->	[a],	as.	 	 	 	 bs	-	->	[b],	bs.																													[a]		as											[b]	bs	

Parse	(analyse)	?-	s([a,b],[]).																																																								[a]	[a]									[b]	[b]	
Generate	(synthesize)	?-s(String,[]).	
																																																																																																											
																																																																																			====================================	
compiles	into	the	logic	program:																											Trace:												?-	s([a,a,b,b],[])	
																																																																									
	 s(P1,P):-	as(P1,P2),	bs(P2,P).																																														?-	as([a,a,b,b],P2),	bs(P2,[])						

																																																																								
	 		as([a|P],P).																																																																										?-	as([a,b,b],P2),	bs(P2,[])				(P2=[b,b])	
	 		as([a|P1],P):-	as(P1,P).						(bs/2	is	symmetric)	
																																																																																																					?-	bs([b,b],[])																						…and	so	on.	
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Ex. 2: a logic grammar for  
a human language sentence

✤ grammar	symbols	can	be	logic	terms,	and	Prolog	calls	are	allowed	(between	brackets),	e.g.	

	 s	-	->	noun	(X),	verb	(Y),	{agree(X,Y}.	

	 noun(plural)	-	->	[lions].	
	 verb(plural)	-	->	[sleep].	

agree(Number,Number).			

compiles	into	

	 s(P1,P2):-	noun(X,P1,P),	verb(Y,P,P2),	agree(X,Y).	

	 noun(plural,[lions|X],X).	
	 verb(plural,[sleep|X],X).		

	agree(Number,Number).
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Ex. 3: Obtaining a parse tree as a 
side effect of parsing
sent --> name, verb.

name -->[john].
name -->[mary].

verb --> [laughs].
verb --> [sings].

==================================
sent(sent(TN,TV)) --> name(TN), verb(TV).

name(name(john)) -->[john].
name(name(mary)) -->[mary].

verb(verb(laughs)) --> [laughs].
verb(verb(sings)) --> [sings].
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Ex. 4: Front ends to Prolog 
Databases
Aim: to recover, as the internal representation a sentence parses into, the 

corresponding Prolog call to a database predicate/s 
Successive parsers:  
- simple sentences constructed around proper names, verbs and 

prepositions. 
- natural language quantifiers (the, a, some, no, few, …) 
- Modularity: complements 
- Interrogative and relative clauses 

We want to consult in English the database: 

  shines(helios). 

  reflects(selene,helios). 
  reflects_upon(selene,helios,gaia). 
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Step 1. Characterize the English 
Subset
Consider sample pairs input/desired output, e.g.: 

Selene shines --> shines(selene) 

Helios shines upon Gaia --> shines_upon(helios,gaia) 

Names -->  constants (e.g. selene) 

Content Verbs --> predicate names; they can contribute a structure to be 
completed (e.g. reflects(X,Y) ) 

Linking Verbs (is, has) --> serve to link with  a noun or adjective) which will 
induce the predicate name (e.g. charming/1, father_of/2 ) 

Prepositions --> become part of a  predicate name (e.g. reflects-upon(X,Y) ) 
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Step 2: Building the desired 
meaning

name(gaia) --> [gaia].   
name(helios) --> [helios]. 
name(selene) --> [selene].   

 np(X) --> name(X). 

iv(X,shines(X)) --> [shines].  
tv(X,Y,reflects(X,Y)) --> [reflects].  

pp(X)  --> prep, np(X). 

prep --> [upon]. 

Tying the noun phrase with the vp: 
 s(M) --> np(X), vp(X,M). 
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Step 3: Adding Quantified Noun 
Phrases
np(X,VP,M) --> d(X,NP,VP,M), 

n(X,NP). 

d(X,NP,VP,the(X,NP,VP)) --> [the]. 
d(X,NP,VP,a(X,NP,VP)) --> [a]. 
d(X,NP,VP,no(X,NP,VP)) --> [no]. 

n(X,sun(X)) --> [sun]. 

vp(X,M)  --> tv(X,Y,Sk), np(Y,Sk,M). 

s(M) --> np(X,VP,M), vp(X,VP). 

TESTS 

i([helios,illuminates,gaia]). 
i([selene,reflects,helios,upon,gaia]). 
i([selene,reflects,helios]). 
… 

go:- i(Input), write(Input), nl, 
s(M,Input,[]), write(M), nl, fail.  

% Also try generating from known M 
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Step 4: A more uniform treatment 
of verbs

comps([],M,M) --> []. 
comps([C1|L],M1,M]) --> comp(C1,M1,M2), comps(L,M2,M). 

comp([P,X],M1,M) --> prep(P), np(X,M1,M).  

verb(X,shines(X),[]) --> [shines].   

verb(X,reflects(X,Y),[[dir(Y)]]) --> [reflects].       
     
verb(X,reflects_upon(X,Y,Z),[[dir(Y)],[upon,Z]])  
 --> [reflects].     

A single rule now suffices for all verb phrases: 
vp(X,M)  --> verb(X,M1,L), comps(L,M1,M). 
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Using Complements for other 
constructions

Peter is happy with math ~~> happy_with(peter,math). 

adj(X,happy_with(X,Y),[[with,Y]]) --> [happy]. 

adj_phrase(X,M1,M) --> adj(X,P,L), comps(L,M1,M). 
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Non-classical reasoning for 
computational linguistics

✤ Assump:ons	(linear	and	intui:onis:c	logic	inspired)	
✤ Abduc:on	
✤ Constraint-Based	

✤Beyond	classical	logic:	“what	if”,	“possible	cause”	scenarios.	

✤ 	Assump&ons:	evolved	from	Girard’s	work	on	linear	logic,	where	linear	implica3on	
serves	to	represent	state	change,	in	the	form	of	resources	that	are	consumed	
(exactly	once)	to	produce	other	resources,	e.g.	
cream -> butter

Affine	linear	implica3on	(or	linear	assump/on):	resources	can	be	consumed	at	most	once.	
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Assumptions in logic grammars

✤ Assumptions developed by [Dahl & al., 1997] refined by 
[Christiansen, Dahl, 2004, ...]

✤ Included in the HYPROLOG and CHRG systems (more later)

17
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Assumptions in logic grammars 

•  [Dahl & al., 1997; Christiansen, Dahl, 2004, ...] 

•  Similar to abduction but with explicit creation and 

application + simple scoping 

•  Can be implemented in CHR more or less the same way 

•  Included in the Hyprolog system 

+A
 Assert linear assumption A for subsequent proof steps.


Linear means “can be used once”.


*A
 Assert intuitionistic assumption A for subsequent proof steps.


Intuitionistic means “can be used any number of times”.


-A
 Expectation: consume/apply existing intuitionistic assumption in the state which 
unifies with A. 


=+A, =*A, =-A
 Timeless versions of the above, meaning that order of assertion of assumptions and 
their application or consumption can be arbitrary.




Linear assumptions: noted “+”, 
consumed with “-“
✤ A	variant	of	append/3:	

append(L1,L2,L):-	+note(L2),	app(L1,L).	

	 app([	],	L):-	-note(L).					
	 app([H|T],	[H|L1])	:-	app(T,	L1).	

Exercise:	Complete	the	following	program	with	clauses	for	s/0,	so	that	it	describes	the	language		
{an	bn	cn}	scrambled.	

assump:ons	a/0,	b/0,	c/0.	

input:-	+a,	+b,	+b,	+c,	+a,	+c,	s.	

all_consumed:-	-P,	!,	fail.	
all_consumed.	
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Relative Clauses through Linear 
Assumptions

Example:	“the	house	that	Jack	built”		(“Jack	built	the	house”)	

np(X,M,M)	-->	name(X).	
np(X,VP,M)	-->	d(X,NP,VP,M),	n(X,N),	rel(X,N,NP).						%	X	represents	the	antecedent	
np(X,NP,NP)	-->	{-missing(X)}.			%	recovers	X	as	the	value	of	the	non-overt	noun	
phrase	

rel(X,N,and(N,R))	-->	[that],	{+missing(X)},	s(R).											%	records	that	X	will	be	missing	
in	R	
rel(_,N,N)	-->	[].									%				there	is	no	rela:ve	clause		
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Intuitionistic Assumptions: noted 
“*”, consumed with “-“
ANAPHORA:	Resolving	pronouns	to	their	antecedents	
np(X,Gender)	-->	name(X,Gender),	{*ac:ng(X,Gender)}.	
np(X,Gender)	-->	{-ac:ng(X,Gender)},	pronoun(Gender).	

sentence(s(A,V,B))	-->		np(A,_),	verb(V),	np(B,_).	

sentences((S1,S2))	-->	sentence(S1),sentences(S2).	
sentences(nil)	-->	[].	 							

pronoun(fem)	-->	[her].	

Sample	Test:	
?-	phrase(sentences(S),	[peter,likes,martha,	mary,hates,her]).	

		S	=	(s(peter,like,martha),s(mary,hate,mary),nil)	?	;	
		S	=	(s(peter,like,martha),s(mary,hate,martha),nil)	?	;	
			no	
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Timeless Assumptions: noted “=*”, 
consumed with “=-“

ELISION:	Reconstruc:ng	missing	elements			

Peter	likes	and	Mary	hates	Martha	

sentence(s(A,V,B))	-->	np(A,_),	verb(V),	np(B,_),	{=*obj(B)}.		
(3meless	assump3on:	can	be	consumed	either	before	or	a<er	being	assumed)	

sentence(s(A,V,B))	-->	np(A,_),	verb(V),	[and],			{=-obj(B)}.	
																																																																																			(3meless	consump3on)	
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Constraint-Based Reasoning

✤ Constraint store as a knowledge base

✤ CHR rules as “business logic” or “integrity constraints” ≈ rules about 
knowledge

✤ Prolog or additional CHR rules as “driver algorithm”

A motivating example . . .
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A motivation example (1:3)

happy(X):- rich(X).
happy(X):- professor(X), has(X,nice_students).

Consider the following Prolog program:

What is it supposed to mean?
Let’s try it:
| ?- happy(henning).
! Existence error in user:rich/1
! procedure user:rich/1 does not exist
! goal:  user:rich(henning)

Another way of saying no :(
The problem: Prolog’s closed world assumption
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A motivation example (2:3)

:- use_module(library(chr)).
:- chr_constraint rich/1, professor/1, has/2.

happy(X):- rich(X).
happy(X):- professor(X), has(X,nice_students).

Let’s try with a little help from CHR:

Intuition: Make certain predicates “open world”.

| ?- happy(henning).
rich(henning) ? ;
professor(henning),
has(henning,nice_students) ? ;
no

Let’s try it:

Looks more like it, but still not perfect . . .
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A motivation example (3:3)

:- use_module(library(chr)).
:- chr_constraint rich/1, professor/1, has/2.

professor(X), rich(X) ==> fail.
happy(X):- rich(X).
happy(X):- professor(X), has(X,nice_students).

Adding a bit of “universal knowledge” in terms of a CHR rule:

| ?- happy(henning), professor(henning).
professor(henning),
has(henning,nice_students) ? ;
no

Let’s try it:

Thus:
• CHR constraints represent concrete facts about a given world.
• CHR rules represent universal knowledge valid in any world.
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Abduction and CHR for 
Computational Linguistics

✤ Abductive Reasoning with CHR

✤ Definition, implementation in CHR, applications

✤ Language Analysis 1: With DCGs (= Prolog) plus CHR

✤ Language Analysis 2: CHR Grammars

✤ Probabilistic Abductive Reasoning with CHR (not included in this 
tutorial)

✤ Each branch of computation represented as a CHR constraint

✤ Allows for best-first computations
26



Abduction????

A term due to C.S.Pierce (1839-1914); the trilogy:

✤ Deduction

✤ Reason “forward” in a sound way from what we know already; finding its logic 
consequences; i.e., nothing really new 

✤ Induction

✤ Creating rules from example, so we can use these rules in new situations

✤ Abduction

✤ Figure out which currently unknown facts that can explain an observation; unsound 
from logical point of view ;-)
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Abduction with CHR

:- use_module(library(chr)).
:- chr_constraint rich/1, professor/1, has/2.
prof(X), rich(X) ==> fail.
happy(X):- rich(X).
happy(X):- professor(X), has(X,nice_students).

You’ve seen it already!

| ?- happy(henning), professor(henning).
professor(henning),
has(henning,nice_students) ? ;
no

In logic programming terms:

Figure out which facts should be added to the program to make a the 
given goal succeed
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Traditional definition of Abductive 
Logic Programming (ALP)

✤ An abductive logic program consist of

✤ A number of predicates, some of which are called abducibles, Abd

✤ A usual logic program, P, in which abducibles do not occur in the head of rules

✤ A set of integrity constraints, IC, which are formulas that must always be true

✤ An abductive answer to a query Q is a set of abducible atoms Ans 
such that

✤ P U Ans |=  Q  and   P U Ans |=  IC

✤ (It is also possible to include an answer substitution, but we ignore 
that)
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Translating ALP into Prolog+CHR

Abducible predicates CHR constraints

Integrity constraints CHR rules

Let us inspect our sample program:

:- use_module(library(chr)).
:- chr_constraint rich/1, professor/1, has/2.

prof(X), rich(X) ==> fail.

happy(X):- rich(X).
happy(X):- professor(X), has(X,nice_students).
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Compare with “traditional” ALP

✤ Usually defined by difficult algorithms and implemented with 
complicated meta-interpreters; see references to work by Kowalski, 
Kakas & al, Decker, ...

✤ Our approach employs existing technology

✤ in the most efficient way
✤ with no meta-level overhead
✤ and we can use all of Prolog and CHR (libraries, all sorts of dirty tricks)

✤ To our knowledge, by far the most efficient implementation of ALP

✤ The cost? Only very limited use of negation (you can read about that)
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Planning as Abduction

✤ Problem: Given a number of tasks + restrictions on the order in 
which they can be done.

✤ Solution: An assignment of a time point to each task so the 
restrictions are obeyed.

✤ In our terms

✤ Abducibles (CHR constraints): Assignment of a time point to a task

✤ Integrity constraints (CHR rules): The restrictions

✤ The goal (≈ desired observation): “The work has been done.”
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Planning as Abduction, example

33
soil
f0
f1

c1 c2

gable

Architect’s drawing: CHR rules:
mount(P0,Time0), mount(P1,Time1) ==>
  supports(P0,P1), Time0 > Time1
  | fail.

mount(P,Time0), mount(P,Time1) ==>
  Time0 \= Time1
  | fail.

Prolog facts:
part(gable).
part(c1).
...
supports(soil,f0).
supports(f0,f1).

Driver algorithm in Prolog: next slide
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CHR rules:
mount(P0,Time0), mount(P1,Time1) ==>
  supports(P0,P1), Time0 > Time1
  | fail.

mount(P,Time0), mount(P,Time1) ==>
  Time0 \= Time1
  | fail.

Prolog facts:
part(gable).
part(c1).
...
supports(soil,f0).
supports(f0,f1).

Driver algorithm in Prolog:
built:-  mount(soil,0), build(1).

build(6):- !.

build(Time):-
   part(P),
   mount(P,Time),
   Time1 is Time+1,
   build(Time1).

| ?- build.
mount(gable,5),
mount(c2,4),
mount(c1,3),
mount(f1,2),
mount(f0,1),
mount(soil,0) ? ;

mount(gable,5),
mount(c1,4),
mount(c2,3),
mount(f1,2),
mount(f0,1),
mount(soil,0) ? ;

no

Wanna see an animation 
of the first solution?
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| ?- build.
mount(gable,5),
mount(c2,4),
mount(c1,3),
mount(f1,2),
mount(f0,1),
mount(soil,0) ? ;

mount(gable,5),
mount(c1,4),
mount(c2,3),
mount(f1,2),
mount(f0,1),
mount(soil,0) ? ;

no

soil
f0
f1

c1 c2

gable



More on planning

✤ With the same technique, we can extend with

✤ Duration, e.g., it takes 8 hours to mount a column
✤ Resources, e.g., to mount a column, we need 1 crane and 12 workers
✤ Restrictions+= At any time, the resources in use must not exceed the 

maximum available (say, 2 cranes and 30 workers)

✤ Your exercise (voluntary!): Extend the example and implement the 
scheme above

✤ Your next exercise (difficult & voluntary): Extend your program so it tries 
to find a solution that minimizes the no. of unoccupied workers — or, 
alternatively, the solution that finishes the building as early as possible.
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Integrating DCG, 
CHR and Assumptions  

✤ My favourite metaphor: “Interpretation as abduction” 

✤ Jerry R. Hobbs, Mark E. Stickel, Douglas E. Appelt, Paul A. Martin: Interpretation 
as Abduction. Artif. Intell. 63(1-2): 69-142 (1993)

✤ Also Charniac, McDermott (1985), Gabbay & al (1997), Christiansen (1993)

✤ We use Prolog’s Definite Clause Grammars (DCGs) extended with 
CHR

✤ Resulting method:
✤ Integrates semantic and pragmatic analysis (in contrast to tradition methods)
✤ A great experimental tool for students and researcher in linguistics; easy to 

approach and “advanced” analyses can be specified in very short time.
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A short historical note

✤ Basic idea comes from CHR Grammars (Christiansen, 2001-2005), 
that we will look at later in the course

✤ Idea of using DCGs emerged through our joint work, 2002, and 
onwards....

✤ Lead to the Hyprolog system (Christiansen, Dahl, ICLP, 2005)
✤ adds a thing layer of syntactic sugar upon Prolog+CHR that supports abduction
✤ and assumptions, 

✤ Here we show things first expressed directly in Prolog(DCG)+CHR
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Adding semantics/pragmatics

✤ Traditionally:

✤ “Semantics” = context-independent (lambda) terms
✤ “Pragmatics” = relating “Semantics” to context, e.g., mapping variables to 

(identifiers of ) “real worlds”

✤ The present approach blurs this distinction, which suits much 
better my intuition about how humans process language

✤ You may see this in the examples
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A DGC with CHR for sem/pragm

40

:- chr_constraint at/2, see/2.

story --> [] ; s, ['.'], story.

s --> np(X), [sees], np(Y),
      {see(X,Y)}.

s --> np(X), [is,at], np(E), 
      {at(E,X)}.

s --> np(X), [is,on,vacation],
      {at(vacation,X)}.

np(peter)    --> [peter].
np(mary)     --> [mary].
np(jane)     --> [jane].

np(chr_fall_school)
       --> [the,iclp,fall,school].

np(our_course)
       --> [our,course].

np(vacation) --> [vacation].

First version: Only noting facts
:- phrase(story,
      [peter,sees,mary,'.',
       peter,sees,jane,'.',
       peter,is,at,the,
             iclp,fall,school,'.',
       mary,is,at,our,course, '.',
       jane,is,on,vacation,'.']).

at(vacation,jane),
at(our_course,mary),
at(iclp_fall_school,peter),
see(peter,jane),
see(peter,mary) ?
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:- chr_constraint at/2, in/2, see/2, skypes/2.

at(iclp_fall_school,X) ==> in(nyc,X).

in(Loc1,X) \ in(Loc2,X) <=> Loc1=Loc2.

at(our_course,X)   ==> at(iclp_fall_school,X).

at(vacation,X)          ==> in(Loc,X), diff(Loc,nyc).

see(X,Y) ==> true |
    (in(L,X), in(L,Y) 
     ; in(Lx,X), in(Ly,Y), diff(Lx,Ly), skypes(X,Y)).

diff(...) <=> ... . % Homemade version of dif/1 for nicer output

% Grammar rules: Exactly the same as before

2nd version: Adding world knowledge

| ?- phrase(story, [mary,is,at,our,course,'.']).

at(iclp_fall_school,mary),
at(our_course,mary),
in(nyc,mary) ?

| :- phrase(story,
      [peter,sees,mary,'.',
       peter,sees,jane,'.',
       peter,is,at,the,
             iclp,fall,school,'.',
       mary,is,at,our,course, '.',
       jane,is,on,vacation,'.']).

at(vacation,jane),

at(iclp_fall_school,mary),

at(our_course,mary),

at(iclp_fall_school,peter),

in(_A,jane),

in(nyc,mary),

in(nyc,peter),

see(peter,jane),

see(peter,mary),

skypes(peter,jane),

diff(nyc,_A) ?



What is HYPROLOG, btw.?

✤ A system that adds a thin layer of syntactic sugar on top of Prolog+CHR
✤ Special syntax for declaring abducibles (as you have seen)
✤ Utilities and options for abductive reasoning (not shown here)
✤ Assumptions implemented as you have just seen

✤ Implementation principles
✤ Using same facilities as DCGs and CHR: term_expansion
✤ Operator declarations in Prolog.   
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A realistic example: Extracting 
UML diagrams from Use Cases

✤ Based on 4 week project work with two students [Christiansen, 
Have, Tveitane, 2007 a+b] 

✤ Only a brief sketch; here using the full power of CHR without caring 
about formal details ;-)

✤ Use cases?? In the OOA/OOP tradition, small stories about the world 
which the system to be developed will fit it.

✤ According to OOA principles, UML diagrams describing classes and 
their property, etc., are produced manually from use cases...

✤ But why not do it automatically, when we have a tool such as Prolog
+CHR which is perfectly suited for semantic/pragmatic analysis
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Example of input and output

From uses cases:

✤ The professor teaches. A 
student reads, writes 
projects and takes exams. 
Henning is a professor. He 
has an office. The 
university has five study 
lines. Students and 
professors are persons.

... extract info and produce
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Examples of CHR rules for 
knowledge extraction (1:2)
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property(man, dog:1) 
property(man, dog:5) 

property(man, dog:(1..5)) 

Merging cardinalities, e.g.:

property(C,P:N), property(C,P:M) <=> 
   count(N), count(M), N=<M 
| property(C,P:(N..M)).

property(man, dog:(0..2)) 
property(man, dog:(1..n)) 

property(man, dog:(0..n)) 

property(C,P:(N1..M1)),property(C,P:(N2..M2)) <=> 
   min(N1,N2,N), max(M1,M2,M), 
   property(C,P:(N..M)).

(NB: “n” is a special symbol meaning “many”)



Examples of CHR rules for 
knowledge extraction (2:2)
Pronoun resolution, e.g.,

Jack and John are teachers. Jack teaches music. John teaches computer science. Mary is a 
student. He has many students.

Our heuristics: Take most recent referent that matches gender and when no ambiguity 
arises; in case of ambiguity, we call it an error

Jack and John are teachers. He ....

46

sentence_no(Now), referent(No,G,Id,T) \  expect_referent(No,G,X) <=>
   T < Now, there is no other relevant referent with Timestamp > T

|

   if there is another relevant referent with Timestamp = T then
      X = errorcode(ambiguous)
   else
      X = Id.



Summary: Language analysis with 
DGC+CHR+ Assumptions

✤ Natural and straightforward integration of semantic/pragmatic analysis 
with parsing

✤ 106 times easier for this purpose than any other, known tools

✤ DCGs (i.e., Prolog) provide parsing plus auxiliary predicates

✤ CHR constraint store as knowledge base; CHR rules for world knowledge

✤ We showed
✤ Direct use of DCG+Prolog
✤ HYPROLOG which provided syntactic sugar, Assumptions and various auxiliaries
✤ A realistic example with pronoun resolution and semantic reasoning
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Language Analysis with Prolog 
and CHR

CHR Grammars 
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CHR Grammars, background

✤ Around 2000, Henning noticed that it was easy to write bottom-up parsers with 
CHR

✤ Experiments showed that there was much more power in this principle than 
expected:

✤ very flexible context-dependent rules, gaps, parallel matching, ...
✤ interesting treatment of ambiguity
✤ having parsing to depend on “semantics”, and a lot of other stuff

✤ 2002: CHR Grammar system released; update to recent version of SWI Prolog
Available at http://www.ruc.dk/~henning/chrg/  

✤ Main publication 2005 [JLP]

✤ Applications: The full power of CHR Grammars still needs to be discovered
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CHR Grammars, overview

✤ Bottom-up parsing with CHR, our principle

✤ A grammar notation and its translation into CHR

✤ What we can do in CHR Grammars, derived from the translation 
into CHR
✤ We have squeezed as much power as possible out of CHR without caring 

whether it is useful (our preferred design methodology ;-)

✤ Example: a biological application
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Bottom-up parsing with CHR

51

Encode the string as a set of constraints with word boundaries
“Peter likes Mary”

token(0,1,peter),token(1,2,likes),token(2,3,mary).

:- chr_constraint np/2, verb/2,
   sentence/2, token/3.

token(N0,N1,peter) ==> np(N0,N1).
token(N0,N1,mary)  ==> np(N0,N1).
token(N0,N1,likes) ==> verb(N0,N1).

np(N0,N1), verb(N1,N2), np(N2,N3)
               ==> sentence(N0,N3).

A bottom-parser that checks word/phrase boundaries

?-  ... .
np(0,1),
verb(1,2),
np(2,3),
sentence(0,3),
token(0,1,peter),
token(1,2,likes),
token(2,3,mary) ? 



A grammar notation upon CHR
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:- chr_constraint np/2, verb/2,
   sentence/2, token/3.
token(N0,N1,peter) ==> np(N0,N1).
token(N0,N1,mary)  ==> np(N0,N1).
token(N0,N1,likes) ==> verb(N0,N1).
np(N0,N1), verb(N1,N2), np(N2,N3)
               ==> sentence(N0,N3).

Why write this? 
:- grammar_symbol np/0, verb/0, 
                  sentence/0.

[peter] ::> np.
[mary] ::> np.
[likes] ::> verb.

np, verb, np ::> sentence.

end_of_CHRG_source.

When we would like to write this:

The CHR compiler
compile-on-load using term_expansion 

?- token(0,1,peter),
   token(1,2,likes),
   token(2,3,mary).

?- parse([peter,likes,mary]).



Inherent handling of ambiguity

✤ I.e., all possible parses are run “in parallel”
✤ You can limit this by, e.g., simplification rules;

✤ in the example, you would end up with only abc1(0,3).
✤ Thus the semantics very procedural! (good or bad?) 53

[a]   ::> a.
[b,c] ::> bc.
[a,b] ::> ab.
[c]   ::> c.
a, bc ::> abc1.
ab, c ::> abc2.

token(0,1,a)

a(0,1) ab(0,2) bc(1,3) c(2,3)

abc1(0,3) abc2(0,3)

token(1,2,b) token(2,3,c)

| ? parse([a,b,c])



What else can we put in? (1:5)

✤ ::>  translates into  ==>

✤ <:>  translates into  <=>

✤ Order independent syntax for simpagations

!a, b, !c <:> ac.

translated into

b(N1,N2) \ a(N0,N1), c(N2,N3) <=> ac(N0,N3).
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What else can we put in? (2:5)

Gaps in the head

[blip], 7...10, [blop] ::> blipblop

✤ translated into

a(N0,N1),b(N2,N3) ::>

   N2-N1 >= 7, N2-N1 =< 10

| ab(N0,N3).

✤ This may be relevant for biologic applications such as RNA folding
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What else can we put in? (3:5)

Left and right context

✤ left-context   -\ core-to-be-reduced   /-   right-context ::> ....

✤ For example

c1, ..., c2 -\ c3, c4 /- ..., c5 <:> c34.

✤ translated into

c1(_,N1), c2(N2,N3), c3(N3,N4), c4(N4,N5), 
c5(N6,_) 

<=> N1=<N2, N5=<N6 | c34(N3,N5).
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What else can we put in? (4:5)

Parallel matching

✤ one-reading-of-the-text $$ another-reading-of-the-text ::> ....

✤ For example:    a $$ b <:> c.

✤ translates into:    a(N0,N1), a(N0,N1) <=> c(N0,N1).

✤ And:   a, 5...12 $$ b, c <:>  d

✤ translates into:
a(N0,N1), b(N0,N11), c(N11,N2)

<=> N1-N2 >= 5, N1-N2 =< 12 | d(N0,N2)

✤ Applications? I forgot why I included it, but it is smart, isn’t it?
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What else can we put in? (5:5)

✤ Assumptions as we have seen

✤ Further equipment for abduction (see paper on CHRG)

✤ All sorts of utilities and options (see online User’s Guide)

✤ Extra-grammatical constraints in the head and body of rules (...)
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Example: Simplification and 
context for disambiguation
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e, [+], e /- (['+'];[')'];[eof])   <:> e.

e, [*], e /- ([*];[+];[')'];[eof]) <:> e.

e, [^], e /- [X] <:> X \= ^ | e.

['('], e, [')'] <:> e.

[N] <:> integer(N) | e.

An abstract and highly ambiguous grammar:

Here we used LR(1) items as right context to disambiguate...
just one special case of what we can do



Example: Context used for 
tagger-like rules
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           name(A) /- verb(_) <:>   subject(A).

verb(_) -\ name(A)            <:>    object(A).

name(A),   [and], subject(B)  <:> subject(A+B).

object(A), [and], name(B)     <:>  object(A+B).

Classify np’s according to position of the verb

name(martha)  verb(likes)  [and]  name(peter)  verb(hates)  name(paul)

Martha likes and Peter hates Paul

subject(martha)

/-

subject(peter)

/-

object(paul)

-\



A little voluntary exercise

✤ Write the remaining rules for a grammar that may parse the entire phrase given 
in the previous slide.
✤ to make certain terminal symbols into nonterminals such as name(mary)
✤ to make certain terminal symbols into nonterminals verb(likes)
✤ to parse complete sentences, i.e., that include explicit object.
✤ to parse incomplete sentences that has implicit object, given by another sentence 

after “and”.
✤ Next, add at attribute to each sentence of the form fact(subject,verb,object) 

and modify your grammar so that it generates the correct “meaning” for each 
sentence, also the incomplete ones.
✤ For example, the first incomplete sentence in the previous example should generate 

the “meaning” fact(martha,like,paul).
✤ Extend the grammar with whatever you find interesting.

61



CHRG for Molecular Biology

✤ Structural	linguis3cs	of	nucleic	acids-	what	we	know	about	this	very	
expressive	language	for	specifying	the	structures	and	processes	of	life:	

✤ ∑={g,c,a,t}	where	g	and	c	tend	to	bind	together,	and	so	do	c	and	a	
✤ Nucleic	acids	are	not	regular	(inverted	repeats	need	mirror	strings,	of	the	

form	u	v	~uR,	with	u,v		∑*),	
✤ 				non-determinis/c	(a	given	state	doesn’t	determine	uniquely	the	next	

state),	non-linear	(cannot	be	expressed	by	grammars	that	never	spawn	
more	than	one	nonterminal),	and		

✤ 					ambiguous	(in	a	way	that	can	subvert	the	implicit	biological	meaning).	
They	are	not	even	context-free…	(David	Searles)	
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Transla:on:	essen:al	in	both	spoken	and	biological	languages

Codons	of	three	nucleo:des	are	translated	to	
amino	acids.	

Input:	
?-

parse([leucine,tryptophan,phenyl
alanine]). 

	 		 Parser:	
 token(tryptophan)::> codon([u,u,g]).
  token(leucine) ::>codon([u,u,a]).

token(leucine) ::>codon([u,u,c]).
token(phenylalanine)==> ::>codon([u,u,u]).
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                 A         C        G         U 
 
     AA  |    Lys    Asn    Lys    Asn 
 
     AC  |    Thr    Thr    Thr    Thr 
 
     AG  |    Arg    Ser    Arg    Ser 
 
     AU  |    Ile    Ile    MET    Ile 
 
     CA  |    Gln    His    Gln    His 
 
     CC  |    Pro    Pro    Pro    Pro 
 
     CG  |    Arg    Arg    Arg    Arg 
 
     CU  |    Leu    Leu    Leu    Leu 
 
     GA  |    Glu    Asp    Glu    Asp 
 
     GC  |    Ala    Ala    Ala    Ala 
 
     GG  |    Gly    Gly    Gly    Gly 
 
     GU  |    Val    Val    Val    Val 
 
     UA  |     -     Tyr     -     Tyr 
 
     UC  |    Ser    Ser    Ser    Ser 
 
     UG  |     -     Cys    Trp    Cys 
 
     UU  |    Leu    Phe    Leu    Phe 
 



Detecting Tandem Repeats

	[X],	string(Y)	::>	string([X|	Y]).	
[X]	::>string([X]).	

string(X),	string(X)::>	tandem_repeat(X).	

TEST:	
?-		parse([a,c,c,g,t,a,c,c,g,t]).		

	tandem_repeat(0,10,	[a,c,c,g,t]);	

tandem_repeat(1,3,[c]);	

tandem_repeat(6,8,[c])	
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CHRG for grammatical inference

✤ CHR/CHRG	 promote	 fairly	 direct	 materializa:ons	 of	 constraint-based	
linguis:c	theories	

✤ But:	no	general	concensus	of	what	they	are	(Shieber:	common	threads	
such	 as	modularity,	 declara:veness,	 par:al	 info),	 no	 stress	 on	 space	
reduc:on	through	narrowing	variables’	domains.	

✤ To	what	 extent	 do	 the	 “constraint-based”	 grammar	models	 fit	 into	 de	
constraint	solving	model	per	se?	

✤Among	 the	 candidate	models,	 Property	Grammars	 stands	 out	 through	
its	aim	at	complete	reliance	on	constraints,	which	are:	
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Constraints in Property Grammar

Cons3tuency					A	:	S													 children	must	have	categories	in	the	set	S,	e.g.	
																													np:	{det,noun,adj,name,	sup}	

Obliga3on									A	:	 B													at	least	one	B	child,	e.g.	vp	:	 verb	

Uniqueness								A	:	B	!														 at	most	one	B	child,	e.g.	np:	det	!	

Precedence								A	:	B	≺C														B	children	precede	C	children,	e.g.	np	:	det	≺noun	

	Requirement				A	:	B⇒C														if	B	is	a	child,	then	also	C	is,	e.g.	np:	noun	⇒	get	

Exclusion	A	:	B 	̸⇔	C																				B	and	C	children	are	mutually	exclusive,	e.g.		

																																																								np:	noun 	̸⇔name	

Dependency	A	:	B	∼	C																	the	features	of	C1	and	C2	are	the	same	
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The Womb Grammar Model of Grammatical 
Inference- the intuitive idea    

In 2012 I was visited by a startling idea to help linguists keep up 
with the rate of grammar discovery needed in our Babel-ish world:

Just as human wombs can, given appropriate input, generate 
different races, could I devise a grammatical "womb" capable of 
mapping a known grammar into the grammar of a different 
language, given only a set of positive but representative input 
sentences of that language, plus its lexicon?
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Womb	Grammar	Parsing-	Hybrid	Parser

✤ Combine	target	corpus	and	lexicon	with		
✤ source	syntax	

We	obtain	a	list	of	violated	proper:es	

Compare	source	syntax	with	violated	proper:es		
to	derive	target	syntax	

E.g.,	if	the	source	grammar	contains	the	precedence	constraint		
NP	:	N	≺	ADJ	but	we	get	the	input	“the	blue	heron”,	a	CHRG	rule		
applies	to	delete	that	precedence	constraint.	Thus	the	constraint		
was	checked	for	viola3on,	not	sa3sfac3on 68



Summary of CHRGs

✤ A powerful language specification language

✤ A powerful language processing system

✤ Exemplifies how you can use CHR to implement fairly advanced, 
knowledge-based systems

✤ A compile-on-load implementation technique, you can use for 
other purposes

✤ The power of CHRGs has not been explored fully; biological 
applications are under consideration
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Summary of the tutorial

✤ Constraint Solving through CHR is for more than numbers, inequalities and stuff 
like that

✤ CHR is a powerful knowledge representation & manipulation language

✤ We have shown methods for abductive and assumptive reasoning and language 
processing, that are

✤ executed directly by the underlying CHR and Prolog systems

✤ thus efficient for the right kind of problems

✤ We have intended that, after this course and a bit of reading, you can

✤ use the methods as described directly

✤ invent your own ways to work with knowledge and experiment with in Prolog+CHR
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Further Applications 

✤ The	Modeling	Beauty	of	Constraint	Solving	(Dahl	16)		
✤ Parsing	as	Seman:cally-Guided	Constraint	Sa:sfac:on:	the	role	of	ontologies	(Dahl	et	al	16)	
✤ Using	Womb	Grammars	for	inducing	the	grammar	of	a	subset	of	Yoruba	sentences	(Adebara	16)	
✤ Shape	Analysis	as	an	aid	to	grammar	induc:on	(Adebara	et	al	15)	
✤ Comple:ng	Mixed	Language	Grammars	through	Womb	Grammars	plus	Ontologies	(Adebara	et	al	

15)	
✤ On	Second-Language	Tutoring	through	Womb	Grammars	(Becerra-Bonache	et	al	13)	
✤ The	role	of	universal	constraints	on	language	acquisi:on	((Becerra-Bonache	et	al	13)	
✤ Principle-Driven	Decision	Making	(Dahl	et	al	2012)	
✤ A	dual	processing	scheme	for	both	spoken	and	biological	languages	(Dahl	&	Maharshak	09)	
✤ Decoding	nucleic	acid	strings	through	spoken	language	(Dahl	10)	
✤ An	RNA-inspired	analysis	of	poetry	(Dahl,	Perriquet,	Jimenez-Lopez	2011)	
✤ chrRNA	(Bavarian	and	Dahl	06):	a	CHR+probability	method	for	RNA	secondary	structure	design		
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The End 


